
A First Course on Kinetics and Reaction Engineering

Example 15.4

Problem Purpose
This problem shows how to test a single parameter rate expression using kinetics data from a PFR 

where the integrated form of the mole balance design equation cannot be properly linearized for the use 
of linear least squares fitting. It additionally illustrates how to handle a gas phase reaction where the total 

number of moles, and consequently the volumetric flow rate, varies along the length of an isothermal 

(constant T), isobaric (constant P) PFR.

Problem Statement
A rate expression is needed for the decomposition of phosgene, equation (1). A series of 

experiments were performed using a plug flow reactor with a diameter of 0.25 cm and a length of 10 cm. 

The feed in all cases was pure COS, and the reactor operated isothermally at 1500K and 1 atm. The feed 
rate was varied and the conversion of COS was recorded. The results are presented in the table below. 

Find a rate expression that is consistent with these data.

COS → CO + S (1)

Inlet Flow Rate 
(cm3 min-1)

fractional COS 
conversion

10 0.99
20 0.93
30 0.86
40 0.78
60 0.66
75 0.60
100 0.51

Problem Analysis
This problem gives PFR kinetics data for a gas phase reaction and asks us to test a specified rate 

expression using integral data analysis. To do this, we will write the mole balance design equation, 
substitute the rate expression, integrate to obtain an algebraic equation and fit the result to the 

experimental data. We will then assess the accuracy of the resulting fitted model and decide whether it is 
sufficiently accurate. It is important to note that the reaction that occurs in the gas phase, and it involves a 

change in the total number of moles. As a consequence, the total molar flow rate and the volumetric flow 
rate will change along the length of the reactor.

Problem Solution
The problem does not suggest a rate expression to test, so we are free to choose one. We’ll start 

with the simple first order rate expression given in equation (2). Assuming that the experimental reactor 
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obeys the assumptions of an ideal plug flow reactor operated in the preferred isothermal, isobaric steady 
state manner, a single mole balance design equation will be sufficient to analyze the data, since only one 

reaction was taking place. The necessary mole balance design equation for an ideal PFR, written in terms 
of COS, is given in equation (3). Mole balances for CO or S could have been used equally well.

r1 = k1PCOS  (2)

 

d !ni
dz

= πD2

4
ri, j =

πD2

4
ν i, jrj

 

d !nCOS
dz

= −πD2

4
r1  (3)

Substitution of the rate expression into the design equation leads to equation (4). Before this can be 

integrated, all variables must be expressed in terms of the dependent variable (here the flow rate of COS, 

ṅCOS) and the independent variable (here z). Looking at equation (4), the reactor diameter and the rate 

coefficient are constants (the latter only because the reactor is isothermal), but the partial pressure of 

COS is expected to change as COS is converted by reaction (1). Thus, the partial pressure of COS must 
be re-expressed in terms of the molar flow rate of COS.

 

d !nCOS
dz

= −πD2

4
k1PCOS  (4)

The partial pressure of COS is equal to the mole fraction of COS times the total pressure, equation 
(5). Substitution into the design equation gives equation (6). Looking at this equation, we see that the 

using it will indeed introduce the molar flow rate of COS, but it also introduces another variable quantity. 
That is, while the total pressure does not vary along the length of the reactor, the total molar flow rate will 

change along the length of the reactor. The reason for this is that each time one COS molecule reacts, 
two product molecules are produced. Therefore, we next need to write the total molar flow rate in terms of 

the molar flow rate of COS.

 
PCOS =

!nCOS
!ntot

P  (5)

 

d !nCOS
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= −πD2

4
k1
!nCOS
!ntot

P
⎛
⎝⎜

⎞
⎠⎟

 (6)

A mole table proves useful in relating one composition variable to another, as discussed in Unit 1. A 
mole table for the present system is presented below.
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Species Inlet molar flow 
rate

Molar flow rate 
after reaction

COS  !nCOS
0

 !nCOS
0 − !ξ1

CO 0  
!ξ1

S 0  
!ξ1

Total Moles  !nCOS
0

 !nCOS
0 + !ξ1

The third column of the mole table provides expressions for the molar flow rate of COS in terms of 
the extent of reaction and for the total molar flow rate in terms of the extent of reaction. Eliminating the 

extent of reaction between these two equations gives an expression for the total molar flow rate in terms 
of the molar flow rate of COS, equation (7).

 !nCOS = !nCOS
0 − !ξ1      ⇒      !ξ1 = !nCOS

0 − !nCOS

 !ntot = !nCOS
0 + !ξ1 = 2 !nCOS

0 − !nCOS  (7)

Substitution of equation (7) into the mole balance design equation, equation (6), leads to equation 

(8). The only variables appearing in that equation are  !nCOS  and z; all the other quantities are constants. 

Consequently we can attempt to separate the variables and integrate equation (8). Doing so leads to 

equation (9).

 

d !nCOS
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= −πD2

4
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2 !nCOS
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P

⎛
⎝⎜

⎞
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 (8)

 

2 !nCOS
0 − !nCOS( )
!nCOS!nCOS

0
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4
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0

L

∫

 
!nCOS
0 − !nCOS + 2 !nCOS

0 ln !nCOS
!nCOS
0

⎛
⎝⎜

⎞
⎠⎟
= −πD2Lk1P

4
 (9)

We now need to fit equation (9) to the experimental data. If equation (9) could be linearized, then 
linear least squares could be used to perform the fitting. However, a careful examination of equation (9) 

reveals that it cannot be properly linearized for least squares without adding more terms or variables. It 
could be put into the form of a straight line with a slope of 1 and an unknown intercept, but linear least 

squares fitting requires a slope that is unknown. Fortunately, the rate expression being tested here has 

only one unknown parameter, the rate coefficient, k1. As described in Supplemental Unit S3, there is a 
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simple alternative to linear least squares fitting that can be used when the model equation contains only 
one unknown parameter. To use this fitting method, the model equation is rearranged to give an 

expression for the unknown parameter. In this problem, that leads to equation (10). Equation (10) is then 

used to calculate a value of k1 for each experimental data point. The resulting set of k1 values is averaged 

and the standard deviation is computed. If the model and data were perfect, the value of k1 would be 

exactly the same for every single data point. Allowing for some experimental error, an accurate model will 

result in a standard deviation of k1 that is a very small fraction of the average value of k1. In addition, the 

differences between the individual k1 values and the average value will not show any systematic trends; 

they will be random. If these criteria are satisfied, then the fit can be accepted as sufficiently accurate and 

the best value for k1 can be taken to equal the average value plus or minus the standard deviation.

 
k1 =

−4
πD2LP

!nCOS
0 − !nCOS + 2 !nCOS

0 ln !nCOS
!nCOS
0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  (10)

Looking at equation (10), one sees that the pressure, reactor diameter and reactor length are given 

in the problem statement, but the inlet and outlet molar flow rates of COS are not. Therefore those 

quantities will need to be calculated for each experimental data point. The problem states that the feed 
was pure COS, so the ideal gas law can be used to calculate the inlet molar flow rate with the other data 
given in the problem statement, equation (11). Once the inlet molar flow rate of COS is known, its outlet 

molar flow rate can be calculated using the fractional conversion of COS that is also given in the problem 

statement. This is done using equation (12).

   
!nCOS

0 = P !V 0

RT
 (11)

   !nCOS = !nCOS
0 1− fCOS( )  (12)

Performing the calculations, one finds the average value of k1 to equal 1.5 x 10-3 mol cm-3 min-1 

atm-1 with a standard deviation of 0.06 x 10-3 mol cm-3 min-1 atm-1. The difference between the individual 

values of k1 and the average were plotted as a function of the fractional conversion, Figure 1. The data do 

not display any systematic trends relative to the expected value of zero. (The deviations appear to be 

very large in the figure, but that is because the y-axis scale is quite small. Figure 1 should not be used to 

assess the magnitude of the errors; it should only be used to look for systematic trends.) Hence, the fit 

appears to be sufficiently accurate and equation (2) is a suitable rate expression. The best value for k1 is 

1.5 ± 0.06 x 10-3 mol cm-3 min-1 atm-1 (standard deviation of the data taken as uncertainty).
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Figure 1. Deviation of individual k1 values from the average as a function of conversion.

This example showed how the total molar flow rate can change when a PFR is used to gather 
kinetics data. That became important when the rate expression in terms of the partial pressure was 

substituted into the design equation. The same thing would have happened if the rate expression had 
used concentration instead of partial pressure. The concentration would be replaced using equation (13), 

introducing the volumetric flow rate, which will vary along the length of the reactor. Writing the volumetric 
flow rate in terms of the ideal gas law, equation (14), again introduces the total molar flow rate. Thus, 

when analyzing PFR kinetics data for a gas phase reaction, it is critical to check whether or not the total 
number of moles changes as a result of reaction. One cannot simply assume either the total molar flow 

rate or the volumetric flow rate to be constant.

  
CCOS =

!nCOS
!V

 (13)

  
!V =
!ntot RT

P
 (14)
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Calculation Details Using MATLAB
The calculations for this problem could easily be performed using a calculator. I used MATLAB for 

both the calculations and the plot. The code I used is provided as Example_15_4.m; it is also shown here 
in Listing 1. The code is a straightforward implementation of the calculation described above and will not 

be explained here. The plotting was done using standard MATLAB functions; consult the MATLAB 
documentation if it is unclear. The output from the code, apart from Figure 1, is shown in Listing 2.

Listing 1. Contents of the file Example_15_4.m used to solve this problem using MATLAB.

Listing 2. Output from execution of code shown in Listing 1.

% MATLAB file used in the solution of Example 15.4 of 
% "A First Course on Kinetics and Reaction Engineering."

% Data provided in the problem statement, in consistent units
Diam=0.25; % cm
L=10.; % cm
T=1500; % K
P=1.0; % atm
Rgas=82.06; % (atm-cm^3)/(mol-K)
Vfr0=[10 20 30 40 60 75 100]'; % cm^3/min
fCOS=[0.99 0.93 0.86 0.78 0.66 0.60 0.51]';

% Calculate the inlet and outlet molar COS flow rates and k for each data
% point
n0COS = (P/Rgas/T)*Vfr0;
nCOS = n0COS.*(1-fCOS);
k = (-4/(pi()*Diam^2*L*P))*(n0COS - nCOS + 2*n0COS.*log(nCOS./n0COS));

% Calculate the average value of k and the standard deviation
k_avg = mean(k)
k_dev = std(k)

% Make a plot of (k - k_avg) vs. fCOS to see if there are systematic trends
plot(fCOS,(k - k_avg),'o',fCOS,zeros(length(fCOS),1),'-');
ylabel('k - k_a_v_g');
xlabel('f_C_O_S');

>> Example_15_4

k_avg =

    0.0015

k_dev =

   5.9289e-05
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