A First Course on Kinetics and Reaction Engineering Unit 15. Integral Data Analysis

Definitions

half-life - time required for the concentration of a reactant to decrease to one-half of its initial value

Nomenclature

$\alpha \quad$ kinetic reaction order with respect to the reactant
$\tau \quad$ space time (average residence time)
$C_{i} \quad$ molar concentration of species i, a superscripted 0 denotes the reactor inlet concentration of species i
$D \quad$ inside diameter of a PFR
$L \quad$ length of a PFR
$P \quad$ total pressure, a subscripted i denotes the partial pressure of species i
$R \quad$ ideal gas constant
SV space velocity
T absolute temperature
$V \quad$ volume within which the reaction is taking place
$\dot{V} \quad$ volumetric flow rate, a superscripted 0 denotes the inlet volumetric flow rate
$k \quad$ rate coefficient
$n_{i} \quad$ moles of reagent $i, i=$ tot denotes the total moles, a superscripted 0 denotes the moles at time zero
$\dot{n}_{i} \quad$ molar flow rate of species $i, i=$ tot denotes the total molar flow rate, a superscripted 0 denotes the molar flow rate at the reactor inlet
$r_{i, j} \quad$ rate of reaction j with respect to species i (rate of generation of species i via reaction j); j may be omitted if only one reaction is taking place
t time
$t_{1 / 2} \quad$ half-life
$y_{i} \quad$ mole fraction of species i
$z \quad$ axial distance along the length of a PFR, measured from the inlet

Equations

$$
\begin{equation*}
\frac{d n_{i}}{d t}=V r_{i, j} \tag{15.1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d \dot{n}_{i}}{d z}=\frac{\pi D^{2}}{4} r_{i, j} \tag{15.2}\\
& C_{i}=\frac{\dot{n}_{i}}{\dot{V}} \tag{15.3}\\
& \dot{V}^{0}=\dot{V} \\
& \dot{V}=\frac{\dot{n}_{t o t} R T}{P} \tag{15.5}\\
& \text { (incompressible liquids) } \tag{15.4}\\
& \dot{n}_{\text {tot }}=\sum_{\substack{i=a l l \\
\text { species }}} \dot{n}_{i} \tag{15.6}\\
& y_{i}=\frac{\dot{n}_{i}}{\dot{n}_{\text {tot }}} \tag{15.7}\\
& P_{i}=y_{i} P=\frac{\dot{n}_{i} P}{\dot{n}_{\text {tot }}} \tag{15.8}\\
& \tau=\frac{V}{\dot{V}^{0}} \tag{15.9}\\
& S V=\frac{1}{\tau}=\frac{\dot{V}^{0}}{V} \tag{15.10}\\
& C_{i}=\frac{n_{i}}{V} \tag{15.11}\\
& P_{i}=\frac{n_{i} R T}{V} \tag{15.12}\\
& P=\frac{n_{t o t} R T}{V} \tag{15.13}\\
& r_{A}=-k\left(C_{A}\right)^{\alpha} \tag{15.14}\\
& \frac{d n_{A}}{d t}=-k V\left(C_{A}\right)^{\alpha} \tag{15.15}\\
& \frac{d n_{A}}{d t}=-k V\left(\frac{n_{A}}{V}\right)^{\alpha}=-k V^{1-\alpha} n_{A}^{\alpha} \tag{15.16}
\end{align*}
$$

$$
\begin{align*}
& t_{1 / 2}=\frac{0.693}{k} \tag{15.17}\\
& t_{1 / 2}=\frac{\left(2^{\alpha-1}-1\right)}{k(\alpha-1)\left(C_{A}^{0}\right)^{\alpha-1}} \quad(\alpha \neq 1) \tag{15.18}\\
& \ln \left(t_{1 / 2}\right)=\ln \left(\frac{\left(2^{\alpha-1}-1\right)}{k(\alpha-1)}\right)+(1-\alpha) \ln \left(C_{A}^{0}\right) \quad(\alpha \neq 1) \tag{15.19}
\end{align*}
$$

