
A First Course on Kinetics and Reaction Engineering

Unit 14. Differential Data Analysis

Overview
The design equations (reactor models) for the perfectly mixed batch reactor and for the PFR are 

differential equations. This presents a small problem when data from reactors of these types are used to 
test a potential rate expression. Experimental reactor data do not include values for the derivatives that 

appear in these equations, and as a result, the equations cannot be fit directly to the experimental data. 
Two approaches are commonly used to address this problem. This unit considers one of these two 

approaches wherein the experimental data are used to generate values for the derivatives, which then 
allows the differential design equations to be fit directly to the data. This is known as differential data 

analysis; its advantages, disadvantages and limitations are discussed herein.

Learning Objectives
Upon completion of this unit, you should be able to define, in words, the following terms:

• forward, backward and central differences

• initial rate
Upon completion of this unit, you should be able to write the defining equation for the following quantities:

• forward, backward and central differences
Upon completion of this unit, you should be able to perform the following specific tasks and be able to 

recognize when they are needed and apply them correctly in the course of a more complex analysis:
• Explain the difference between integral and differential data analysis for batch reactor and PFR 

data
• Describe the assumptions used in differential analysis of batch reactor and PFR data and its 

limitations
• Perform differential analysis of batch reactor and PFR data to test the validity of a rate expression 

and obtain the best values of the parameters appearing in it
• Describe how to measure initial rates with a batch reactor and perform differential analysis using 

initial rate data
• Describe the differential operation of a PFR

• Explain why differential data analysis can be used for any batch reactor data, but can only be used 
with PFR data if the reactor is operated differentially

• Distinguish between PFR data that can and cannot be analyzed using the differential method

Information
The differential method of data analysis first will be presented here with reference to the analysis of 

data from a batch reactor. Following that, application of the differential method of data analysis to PFR 

data will be considered. For present purposes it is assumed that experimental data have been collected 
using an isothermal, perfectly-mixed batch reactor. For illustrative purposes, it is further assumed that a 
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single reaction takes place at the conditions studied, and that the purpose of the experimentation is to find 
a suitable rate expression for that single reaction. Under these circumstances, the mole balance design 

equation for the reactor is given by equation (14.1). In equation (14.1), i denotes a reagent, j denotes a 

reaction, n denotes number of moles, V represents the volume within which the reaction occurs, t denotes 

time and ri,j is the rate of generation of species i via reaction j. Inherent in the use of this design equation 

is the assumption that the appropriate normalization factor for the reaction being studied is the volume.

  

dni

dt
=Vri, j  (14.1)

The experimental data will include the full composition of the fluid at the start of the run. Beyond 
this, the data will consist of measured values some quantity related to the extent of reaction versus the 

elapsed time since the start of the run. These measured quantities are sufficient to calculate the moles, ni, 

of any species, i, for each experimental data point.

Equation (14.1) is a differential equation, whereas curve fitting (least squares) usually requires an 

algebraic equation to be fit to the data. There are two approaches that can be taken in the fitting of 

equation (14.1) to the experimental data. These approaches are known as integral data analysis and 
differential data analysis. In integral data analysis, differential equation (14.1) is first solved, leading to an 

algebraic equation for ni versus t, and that resulting equation is then fit to the experimental data. This unit 

examines the other approach: differential data analysis.

Generally, differential data analysis is less accurate than integral data analysis. Differential data 

analysis is useful when one has very high quality data (very accurate measurements with very little noise 

in the data) or when one simply wants to perform a “quick and dirty” preliminary analysis. The essence of 

differential data analysis lies in approximating a numerical value for the derivative, 
dni
dt

, and then treating 

it like any other experimentally measured variable. When this is done, equation (14.1) (or a linearized 

form thereof) can be fit directly to the experimental data.

There are at least three ways to approximate 
dni
dt

. The first is based upon the approximation given 

in equation (14.2). The approximation used in equation (14.2) is only valid when Δt is small; it becomes 

exact in the limit where Δ ni and Δt go to zero. For this reason equation (14.2) should only be used to 

approximate the value of 
dni
dt

 when the changes in ni and t between successive data points are small. 

The value of 
dni
dt

 will normally be different for each data point. That is, 
dni
dt

will change continuously over 

the course of each experimental run.

  

dni

dt
≈
Δni

Δt
t ,ni( )

 (14.2)

The changes in the number of moles and the elapsed time, Δni and Δt, between each pair of data 

points can be computed directly from the (t,ni) data points. If the value of 
dni
dt

 was being estimated for 

data point k, one could use a forward difference, equation (14.3), a backward difference, equation (14.4) 
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or a central difference, equation (14.5). None of these finite differences approximations should be used if 

the data are “noisy” (the random fluctuations due to experimental uncertainty are relatively large). If the 

data are noisy, using these equations put too much emphasis on individual data points and miss the 

general trends of the data.

  

dni

dt
k

≈
ni( )k+1

− ni( )k

t( )k+1
− t( )k

 (14.3)

  

dni

dt
k

≈
ni( )k

− ni( )k−1

t( )k
− t( )k−1

 (14.4)

  

dni

dt
k

≈ 1
2

⎛
⎝⎜

⎞
⎠⎟

ni( )k+1
− ni( )k

t( )k+1
− t( )k

+
ni( )k

− ni( )k−1

t( )k
− t( )k−1

⎛

⎝
⎜

⎞

⎠
⎟  (14.5)

A second way to approximate 
dni
dt

 is graphical. One would first plot the data from the run as ni vs. 

t, and draw a smooth curve through the data. Then, at the t corresponding to each experimental data 

point, a straight line tangent to the curve would be drawn. The slope of this tangent would be measured 

and taken as the approximate value of 
dni
dt

for that data point. The third way to approximate 
dni
dt

 would 

be to fit a high order polynomial to the experimental data. Most spreadsheet programs have a built-in 

function that will do this. It is very easy to take the derivative of a polynomial, so this would be done, and 

the resulting equation would be evaluated at the t corresponding to each data point. The value so-

computed would be taken as the approximate value of 
dni
dt

 for that data point. The latter two methods of 

approximation, graphical and polynomial, are a little less susceptible to errors caused by noisy data than 

the finite differences approximation.

At this point, one will have a set of values for 
dni
dt

 for each experimental data point k. The next step 

is to substitute the mathematical function that has been chosen for evaluation as a rate expression into 

equation (14.1). The resulting equation will contain one or more unknown parameters (rate constants, 

pre-exponential factors, activation energies, reaction orders, etc.). Fitting the equation (by linear or non-

linear least squares) to the experimental data gives the “best” values for each of the unknown 

parameters, an estimate of the uncertainty in these values, and a correlation coefficient that indicates the 

“goodness” of the fit.

The final step is to make a decision whether the fit is sufficiently accurate. In making this decision 

one should not only consider the value of the correlation coefficient, but one should also use graphical 
analysis to look for systematic deviations between the experimental data points and the predictions of the 

mathematical function.  If it is decided that the fit is sufficiently accurate, the data analysis is completed; 
otherwise, a different mathematical function is selected for analysis and the fitting is repeated until a good 

fit is obtained.
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Initial rate data represent a special kind of differential data. Initial rate data are most easily 
generated when the reaction being studied involves two different reactants that can be prepared 

separately. In each experiment, one separately prepares the desired amount of each reactant at the 
desired reaction temperature so that the composition upon mixing the two will be known. The separate 

reactants are then rapidly mixed, and at some time very soon after, the reaction mixture is analyzed to 
determine the change in the amount of one of the reactants. The time at which the mixture was sampled 

and the measured change in the amount of one of the reactants is used to approximate the derivative as 
a forward difference (see above). Alternatively, several data points are measured in rapid succession. The 

moles versus time are calculated from these measurements and plotted. The slope of the plot at the 
origin, determined using any of the methods just described, is used as the initial rate. Because the value 

of the derivative is estimated at the initial time, the composition for the data point is taken to be the initial 
composition. The primary advantage of initial rate data is that the initial composition is more directly 

controlled and often, more easily varied.

To summarize, the differential analysis of batch reactor data involves the following steps:

• Approximate the value of 
dni
dt

 for each experimental data point using one of the following methods
- finite differences
- graphical construction of tangents to the ni vs. t data
- fitting a polynomial to the ni vs. t data, taking the derivative of the polynomial and evaluating it

• Substitute the mathematical function to be tested as a rate expression into equation (14.1)
- The derivative is treated like any other experimentally measured variable
- For a given data point, the composition used in the rate expression is the composition of the system 

at the point in time for which the derivative’s value was estimated
• Fit the equation (14.1) to the rate-composition data and decide whether the fit is sufficiently accurate
• If the fit is sufficiently accurate

- determine the best value for each unknown parameter
- determine the uncertainty in the values of the parameters

• If the function is not sufficiently accurate, guess another function and repeat from that point on

The design equation for an isothermal, steady-state PFR with only one reaction taking place, 

equation (14.6), looks quite similar to the design equation for an isothermal batch reactor, equation (14.1). 
As such, it would seem that the differential method of data analysis for batch reactors can also be used 

with PFR data. In fact, PFR data can only be analyzed differentially if the reactor was operated 
differentially during the experimentation. The reason for this is related to the approximation of a numerical 

value for the derivative.

   

d !ni

dz
= πD2

4
ri, j  (14.6)

With the perfectly mixed batch reactor, the data that are collected experimentally are the same two 

variables that appear in the derivative, namely ni and t. As a consequence, a plot of ni versus t can be 

constructed from the data for any experiment. The slope of that plot can be measured at any time and 
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taken to approximate the value of
dni
dt

 at that time. The operating procedure for a PFR differs in that the 

experimentally measured data are not the same as the quantities that appear in the derivative of the 

design equation (  !ni  and z). Most commonly, all the experiments are done using one reactor, and so z has 

the same value in every experiment. That is, in those experiments, the composition is not typically 

measured at many points along the length of the reactor (that is, at different values of z), but instead it is 

only measured at the outlet from the reactor, z = L. Thus, one typically doesn’t have the data for   !ni  

versus z, and consequently a plot can’t be generated and a slope can’t be measured at any value of z. 

Simply put, the value of the derivative, 
 

d !ni
dz

, usually cannot be approximated directly from the 

experimental data.

When using a PFR, an approximate value for the derivative in equation (14.6) can only be obtained 
from the difference in composition between the inlet and the outlet as in equation (14.7), and then only 

under certain conditions. The approximation given in equation (14.7) is only valid mathematically when 
the difference between the inlet and outlet molar flow rates is small. The practical consequence of this 

restriction is that the differential method of data analysis can only be used with PFR data if the PFR was 
operated so that the change in molar flow rate of species i was very small. When plug flow reactors are 

operated in this way, it said that they are operated differentially. In order to use the differential method of 
data analysis, the reactor must have been operated differentially for every data point used in the analysis.

  

d !ni

dz
≈
Δ !ni

Δz
=
!ni outlet

− !ni inlet

L
 (14.7)

If the PFR is operated differentially during all experiments, then a value can be estimated for the 

derivative using equation (14.7), and the derivative in equation (14.6) can be treated as if it is a measured 
variable and not a derivative. That is, the data can be analyzed in the same way as differential analysis of 
batch reactor data, with one additional, minor difference.

When the differential method is applied to differential PFR data, the function being tested for its 

suitability as a rate expression is again substituted into the design equation. In this case, however, the 
derivative in the design equation is replaced by an average value for that particular experiment, equation 
(14.7). Consequently, the composition variables appearing in the rate expression should be their average 

values (i. e. between the inlet and the outlet) for that particular experiment. Put differently, for a given data 

point, the value of the derivative should be estimated using equation (14.7) and the corresponding 
composition should be taken to equal the average of the inlet and outlet composition. The most important 
point, however, is that the reactor must have been operated differentially; otherwise the PFR data cannot 

be analyzed using the differential method.
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