
A First Course on Kinetics and Reaction Engineering

Example 13.2

Problem Purpose
This example illustrates the analysis of kinetics data from a CSTR where the rate expression must 

be linearized.

Problem Statement
A new enzyme has been found for the dehydration reaction given in equation (1). A series of 

experiments were performed using a CSTR operating at steady-state and isothermally. The inlet flow rate 

was fixed at 5 mL per min and the reactor fluid volume was constant at 50 mL in all experiments. The inlet 
concentration of substrate, S, was changed for each experiment and the data given below for the product, 

P, concentration were recorded.  Determine whether Michaelis-Menten kinetics adequately describe the 
rate of reaction, and if they do, determine the best values for the two kinetic parameters in the Michaelis-

Menten rate equation.

S → P + H2O (1)

Inlet
S Concentration

(mmol/L)

Outlet
P Concentration

(mmol/L)
12.6 1.01
11.2 0.98
9.0 0.92
8.1 0.90
6.3 0.83
5.6 0.79
4.3 0.71
3.6 0.65
2.3 0.52
1.0 0.29

Problem Analysis
In this problem we are given kinetics data for an enzyme-catalyzed reaction from a CSTR and 

asked to determine whether a Michaelis-Menten rate expression describes the kinetics of the reaction. 
The problem will be solved by substituting the rate expression into the CSTR design equation and fitting 

the resultant equation to the data. If the fit is good, then the Michaelis-Menten rate expression, with the 
parameter values found from the fit, is suitable as a rate expression for the reaction studied.
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Problem Solution
Recall that the procedure for generating a rate expression involves (1) choosing a reactor to use in 

the laboratory, generating a design equation for the reactor and validating that design equation, (2) 
gathering experimental data, (3) picking a mathematical function to test as a rate expression, (4) 

substituting the chosen rate expression into the design equation and fitting the resulting design equation 
to the experimental data, (5) deciding whether the fit is adequate, and (6) if the fit is adequate, calculating 

the best values for the kinetics parameters and estimating their uncertainties or, if the fit is not adequate, 
repeating the process from step (3). Here we assume that experiments have been performed to ensure 

that the reactor does indeed behave as an ideal CSTR and to ensure that physical processes are not 
limiting the rate of reaction.

For an isothermal CSTR operating at steady state and with only one reaction taking place, the mole 

balance given in equation (2), written for i = any reactant or product, is all that is needed to model the 

reactor. The Michaelis-Menten rate expression (see Unit 9) is given in equation (3), where the square 

brackets denote concentration. Writing equation (2) for the product, P, noting that there is no P in the feed 

(ṅP0 = 0), and substituting the Michaelis-Menten rate expression gives equation (4).

 !ni − !ni
0 =Vri, j  (2)

rp =
Vmax S[ ]
Km + S[ ]  (3)

   
!nP =V

Vmax S⎡⎣ ⎤⎦
Km + S⎡⎣ ⎤⎦

 (4)

The next step is to fit equation (4) to the experimental data. This could be done using a non-linear 
least squares approach (see Unit 16 and Supplemental Unit S4). Here, however, it will be noted that if the 

reciprocal of equation (4) is written, equation (5), and rearranged to give equation (6), the resulting 

equation is linear. This is perhaps more easily seen if x, y, m and b are defined as in equations (7) 

through (10) and substituted into equation (6), leading to equation (11). Equation (11) is the equation for a 

straight line with a slope equal to m and an intercept equal to b.

 

1
!nP

= 1
V
Km + S[ ]
Vmax S[ ]  (5)

 

V
!nP

= Km

Vmax S[ ] +
1
Vmax

 (6)

x = 1
S[ ]  (7)
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y = V
!nP

 (8)

m = Km

Vmax

⎛
⎝⎜

⎞
⎠⎟

 (9)

b = 1
Vmax

⎛
⎝⎜

⎞
⎠⎟

 (10)

y = mx + b  (11)

Here, the model equation is linear, so linear least squares can be used to fit it to the experimental 

data (see Supplemental Unit S3). Linear least squares fitting can be performed manually, using a 
calculator, using a spreadsheet or using mathematics software. No matter which tool one chooses to use, 

it will be necessary to provide the following information and input data:

• the number of independent (x) variables

• whether or not the model includes an intercept (b)

• a set of experimental data points, each of which consists of a value for the dependent variable (y) 

and corresponding values for each of the independent variables (xi)

Thus, before the fitting can be performed, it is necessary to calculate values of x and y 

corresponding to each of the experimental data points given in the table in the problem statement. The 
concentration of S appearing in equation (7) is the outlet concentration whereas the table provides the 

inlet concentration. A mole table, or the definition of extent of reaction, can be used to derive the 
relationship between the molar flow rates of S and P, equation (12). Expressing the molar flow rates in 

terms of the volumetric flow rates and concentrations, rearranging and noting that for a liquid phase 
system such as this, the inlet and outlet volumetric flow rates are equal leads to equation (14), from which 

the value of x can be computed, equation (15).

 !nS = !nS
0 − !nP  (12)

 
!V S[ ] = !V 0 S[ ]0 − !V P[ ]  (13)

S[ ] = S[ ]0 − P[ ]  (14)

x = 1
S[ ] =

1
S[ ]0 − P[ ]

 (15)

In order to calculate the corresponding values of y using equation (8), the outlet molar flow rate of 

P is needed, since the reactor volume (50 mL) is given in the problem statement. This is found simply 
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using the definition of concentration as expressed in equation (16), which can be substituted into equation 

(8) leading to equation (17) for the calculation of y.

 !nP =
!V P[ ]  (16)

 
y = V
!V P[ ]  (17)

Thus, we can generate a set of (x,y) data using equations (15) and (16). The model has only one 

independent variable, x, and it does include an intercept. With this information and input data we have 

everything needed to fit the model to the data. Upon doing so, using whichever linear least squares fitting 

tool one chooses to employ, the resulting output shows that the correlation coefficient, r2, is equal to 

0.9988, the best value of the slope, m, is equal to 18.5 ± 0.5 min and the best value of the y-intercept, b, 

is equal to 8.67 ± 0.27 x 103 mL min mmol-1 (95% confidence limits based upon the data given in the 

problem statement). The fitting tool may also produce a model plot like that shown in Figure 1, but if such 
a plot is not created, one can be generated easily.

Figure 1. Model plot showing the experimental data as points and the model’s predictions as a line.

Before the best values for m and b can be accepted, one must decide whether the final model is 

sufficiently accurate. In this case, the accuracy of the model can be assessed using the correlation 
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coefficient and the model plot. The closer the correlation coefficient is to a value of 1.0, the better the fit of 
the model to the data. In this case, the correlation coefficient of 0.9988 indicates an excellent fit. 

Additionally, if the fit is accurate, then the scatter of the experimental data about the model should be 
small and random; there should not be any systematic deviations of the data from the model. Examining 

the model plot, Figure 1, it is apparent that these criteria also are satisfied. Thus, the model does appear 
to be sufficiently accurate and the values of the slope and intercept can be accepted.

We are interested in the best values for the parameters, Vmax and Km, not the slope and intercept. 

The value of Vmax can be found from the intercept, b, by rearranging equation (10) as shown in equation 

(18). Similarly, Km can be found by rearranging equation (9), as shown in equation (19). A differential error 

analysis shows that if a model parameter, p, is related to the slope, m, and intercept, b, of a linearized 

from of the model, as in equation (20), then the uncertainty in that parameter, λp, is related to the slope, 

intercept and their uncertainties, λm and λb, according to equation (21). Applying that relationship to the 

present problem shows that the uncertainties in Vmax and Km should be calculated using equations (22) 

and (23).

Vmax =
1
b

 (18)

Km = mVmax =
m
b

 (19)

p = f m,b( )  (20)

λp =
∂ f
∂m

⎛
⎝⎜

⎞
⎠⎟
2

λm
2 + ∂ f

∂b
⎛
⎝⎜

⎞
⎠⎟
2

λb
2  (21)

λVmax =
λb
b2

 (22)

λKm
= λm

b
⎛
⎝⎜

⎞
⎠⎟
2

+ mλb
b2

⎛
⎝⎜

⎞
⎠⎟
2

 (23)

Applying equations (18), (19), (22) and (23) one finds that Vmax = 1.15 ± 0.04 x 10-4 mmol mL-1 min-1 

and Km = 0.0021 ± 0.00009 mmol mL-1.

Calculation Details Using MATLAB
Three MATLAB script files are provided with Supplemental Unit S3. The file names indicate the 

number of independent variables and whether or not the model has an intercept. The script named 

FitLinmSR is used when the model has one independent variable (x) and does not include the intercept 

(b). FitLinmbSR is used when the model has one independent variable and does include the intercept, 

and FitLinSR is used when the model has two or more independent variables. (With MATLAB, when the 
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model has two or more independent variables, it must have an intercept; Supplemental Unit S3 describes 
how to convert a model without an intercept into a model that has an intercept.) In this problem the model 

has one independent variable and an intercept, so the script file named FitLinmbSR will be used. To do 
so, the script file must be located in the current MATLAB working directory or in the MATLAB search path.

Before executing FitLinmbSR, the experimental values of x must be stored in a vector named x, 

and the experimental values of y must be stored in a vector named y_hat. Upon execution of the script, it 

will return the correlation coefficient, r2, as r_squared, the slope, m, as m, the 95% confidence limits on 

the slope, λm, as m_u, the intercept, b, as b and the 95% confidence limits on the intercept, λb, as b_u. It 

will also generate a model plot. Once these values are available, the best values for Vmax and Km and their 

uncertainties can be computed using equations (18), (19), (22) and (23). The commands for performing 

all these tasks can be entered at the MATLAB command prompt, but here they have been saved in the 

MATLAB file named Example_13_2.m which accompanies this solution. Listing 1 shows the code from 

Example_13_2.m and Listing 2 shows the output that it produces, except for the model plot.

Listing 1. Contents of the file Example_13_2.m used to solve this problem using MATLAB.

% MATLAB file used in the solution of Example 13.2 of "A First Course on
% Kinetics and Reaction Engineering."

% Enter data provided in the problem statement in consistent units

V = 50; % mL
VFR = 5; % mL per min
CS0=[12.6 11.2 9.0 8.1 6.3 5.6 4.3 3.6 2.3 1.0]'; % mmol per L
CS0 = CS0/1000; % mmol per mL
CP=[1.01 0.98 0.92 0.90 0.83 0.79 0.71 0.65 0.52 0.29]'; % mmol per L
CP = CP/1000; % mmol per mL

% Calculate corresponding values of x and y_hat, equations (15) and (16)
x = 1./(CS0 - CP);
y_hat = V/VFR./CP;

% Use the MATLAB script file "FitLinmbSR.m" from "A First Course on
% Kinetics and Reaction Engineering" to fit a straight line to the data.
FitLinmbSR

% Calculate Vmax and Km and their uncertainties
Vmax = 1/b
Vmax_u = b_u/b^2
Km = m/b
Km_u = sqrt((m_u/b)^2 + (m*b_u/b^2)^2)
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Listing 2. Output generated upon execution of Example_13_2.m.

>> Example_13_2

r_squared =

    0.9988

m =

   18.4636

m_u =

    0.5267

b =

   8.6732e+03

b_u =

  269.6153

Vmax =

   1.1530e-04

Vmax_u =

   3.5841e-06

Km =

    0.0021

Km_u =

   8.9819e-05
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