
A First Course on Kinetics and Reaction Engineering

Example 13.1

Problem Purpose
This problem illustrates the generation of a rate expression using kinetics data obtained from a 

CSTR.

Problem Statement
A 1.7 L CSTR was used to study the kinetics of reaction (1) which takes place in the liquid phase 

using an inert solvent. The reaction is suspected of being auto-catalytic with I2 serving as a catalyst. For 

this reason the experiments were run isothermally at a constant space time of 8.5 min, but with varying 
inlet concentrations of (CH3)2CHCH2I and I2. The fractional conversion of (CH3)2CHCH2I was measured at 

steady-state in each experiment. The data in the table below were accumulated in a series of experiments 
that all used the same reactor temperature.

2 (CH3)2CHCH2I ⇄ (CH3)3CH + (CH3)2CCH2 + I2 (1)

[(CH3)2CHCH2I]0 (mol/L) Inlet[I2]0 (mol/L) fractional 
conversion

0.10 0.75 9.93E-03

0.25 0.37 6.93E-03

0.30 0.19 4.95E-03

0.48 0.61 8.92E-03

0.65 2.48 1.81E-02

0.79 3.07 1.98E-02

0.93 0.09 3.61E-03

1.00 3.39 2.09E-02

1.33 1.27 1.28E-02

1.50 1.70 1.53E-02

1.68 1.94 1.59E-02

2.00 0.47 8.08E-03

a. Test a first order rate expression, rCH3( )CHCH2I = −kC CH3( )CHCH2I , for consistency with these data.

b. Test a rate expression that is first order in the reactant and one-half order in the catalyst, 

rCH3( )CHCH2I = −kC CH3( )CHCH2I CI2
, for consistency with these data.
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c. Test a rate expression that is first order in the reactant and first order in the catalyst, 
rCH3( )CHCH2I = −kC CH3( )CHCH2ICI2

, for consistency with these data.

Problem Analysis
This problem clearly involves a chemical reaction taking place within a CSTR. It doesn’t provide 

thermodynamic data or ask questions related to equilibrium, so it is most likely either a kinetics problem or 

a reaction engineering problem. Upon reading the question, we see that the rate expression is unknown 
and we are asked to test three rate expressions to see if they are suitable using CSTR kinetics data. 

Therefore, this problem is a kinetics type of problem, and to answer it we will write the design equation for 
the reactor, substituting the rate expression being tested into it, fit the resulting equation to the 

experimental kinetics data, and decide whether or not the fit is satisfactory.

Problem Solution
First, for simplicity sake, let A represent (CH3)2CHCH2I, X represent (CH3)3CH, Y represent 

(CH3)2CCH2, and Z represent I2. Equation (1) can be re-written using this notation.

2 A ⇄ X + Y + Z (1)

Recall that the procedure for generating a rate expression involves choosing a reactor to use in the 
laboratory, generating a design equation for the reactor and validating that design equation, gathering 

experimental data, picking a mathematical function to test as a rate expression, substituting the chosen 
rate expression into the design equation, fitting the resulting design equation to the experimental data,  

deciding whether the fit is adequate and, if the fit is adequate, estimating the uncertainty in the rate 
expression parameters. If the fit is not adequate, the process is repeated using a different mathematical 

function for the rate expression. Here we assume that experiments have been performed to ensure that 
the reactor does indeed behave as an ideal CSTR. This is a single phase system, so we do not need to 

be concerned about interfacial concentration or temperature gradients.
For an isothermal CSTR operating at steady state and with only one reaction taking place, a mole 

balance design equation for species i is given in equation (2). When only one reaction is occurring, the 

reactor can be modeled by writing this equation one time with i representing any reactant or product 

taking part in the reaction. Choosing i to be the reactant, A, results in equation (3) as the mole balance 

design equation.

 !ni − !ni
0 =Vri, j  (2)

 !nA − !nA
0 =VrA,1  (3)

The rate expression to be tested in part (a) of the question is given in equation (4). Substituting 

equation (4) into equation (3) gives equation (5).

rA,1 = −kCA  (4)
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 !nA − !nA
0 = −VkCA  (5)

The next step in the process is to fit equation (5) to the experimental data. If we define xa, y and m 

as given in equations (6) through (8), and substitute them into equation (5), equation (9) results. It is easy 

to see that equation (9) is the equation for a straight line through the origin with slope, m.

xa = −VCA  (6)

 y = !nA − !nA
0  (7)

m = k  (8)

y = mxa  (9)

Since equation (9) is linear, linear least squares can be used to fit it to the experimental data (see 
Supplemental Unit S3). Linear least squares fitting can be performed manually, using a calculator, using a 

spreadsheet or using mathematics software. No matter which tool one chooses to use, it will be 
necessary to provide the following information and input data:

• the number of independent (x) variables

• whether or not the model includes an intercept (b)
• a set of experimental data points, each of which consists of a value for the dependent variable (y) 

and corresponding values for each of the independent variables (xi)

Thus, we need to find values of xa and y corresponding to each of the experimental data points in 

the table in the problem statement. To calculate xa, we first apply the definition of concentration for a flow 

system to equation (6), giving equation (10). We then note that in a liquid phase system, the density can 

be assumed to be constant, so that the inlet volumetric flow rate equals the outlet volumetric flow rate. At 

the same time, the outlet molar flow rate can be expressed in terms of the inlet molar flow rate and the 

fractional conversion, leading to equation (11). The inlet molar flow rate of A divided by the inlet volumetric 

flow rate is, by definition, the inlet concentration of A, leading to equation (12). The reaction volume, V, 

that appears in equation (12) is given in the problem statement as being equal to 1.7 L. The table in the 

problem statement provides the values of CA0 and fA for each data point, so xa can be calculated for each 

data point using equation (12).

 
xa = −V !nA!V

 (10)

 
xa = −V

!nA
0 1− fA( )
!V 0  (11)

xa = −VCA
0 1− fA( )  (12)
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To calculate y we first express outlet molar flow rate in equation (7) in terms of the inlet molar flow 

rate and the fractional conversion, leading to equation (13). The inlet molar flow rate of A is equal to the 

inlet volumetric flow rate times the inlet concentration of A, giving equation (14). Finally, the inlet 

volumetric flow rate is related to the space time and the volume, leading to equation (15). The volume, V, 

and the space time, τ, are specified in the problem statement to have the same values (1.7 L and 8.5 min, 

respectively) for all experiments. The table in the problem statement provides the values of CA0 and fA for 

each data point, so y can be calculated for each data point using equation (15).

 y = !nA − !nA
0 = !nA

0 1− fA( )− !nA0 = − !nA
0 fA  (13)

 y = −CA
0 !V 0 fA  (14)

y = −CA
0VfA
τ

 (15)

Thus, we can generate a set of (xa,y) data using equations (12) and (15). The model has only one 

independent variable, xa, and it does not include an intercept. With this information and input data we 

have everything needed to fit the model to the data. Upon doing so, using whichever linear least squares 

fitting tool one chooses to employ, the resulting output shows that the correlation coefficient, r2, is equal to 

0.6488 and the best value of the slope, m, is equal to 0.0015 ± 0.0004 (95% confidence limits based upon 

the data given in the problem statement). The fitting tool may also produce a model plot like that shown in 

Figure 1, but if such a plot is not created, one can be generated easily.

Before the best value for m can be accepted, one must decide whether the final model is sufficiently 

accurate. In this case, the accuracy of the model can be assessed using the correlation coefficient and 

the model plot. The closer the correlation coefficient is to a value of 1.0, the better the fit of the model to 
the data. In this case, the correlation coefficient of 0.6488 indicates a poor fit. Additionally, if the fit is 

accurate, then the scatter of the experimental data about the model should be small and random; there 
should not be any systematic deviations of the data from the model. Examining the model plot, Figure 1, it 

is apparent that deviations of the data points from the line are large. Thus, the model does not appear to 
be sufficiently accurate, meaning that the rate expression given in equation (4) is not acceptable.
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Figure 1. Model plot for part (a) showing the experimental data as points and the model’s predictions as a 
line.

The analysis for part (b) is very similar to that for part (a), so only the differences will be highlighted 

here. The rate expression to be tested in part (b) of the question is given in equation (16). Substituting 
equation (16) into the reactor design equation, equation (3), gives equation (17).

rA,1 = −kCA CZ  (16)

 !nA − !nA
0 = −VkCA CZ  (17)

If xb is defined according to equation (18), y is again defined as in equation (7) and m is defined as 

in equation (8), this model equation also takes the form of a straight line through the origin with slope, m, 

equation (19).

 xb = −VCA CZ = −xa CZ  (18)

y = mxb  (19)

Thus, before we can fit the model to the experimental data, we need to calculate values of xb and y 
corresponding to each of the experimental data points in the table in the problem statement. The values 

of y are the same as in part (a). To calculate the values of xb we need values for CZ for each experimental 
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data point. CZ can be expressed in terms of the molar flow rate of Z and the volumetric flow rate as shown 

in equation (20). This is a liquid phase system so the inlet and outlet volumetric flow rates are equal.

 
CZ =

!nZ
!V
=
!nZ
!V 0  (20)

The outlet molar flow rate of Z can be calculated knowing the inlet composition and the fractional 

conversion of A. To do so, first use a mole table or the definition of the extent of reaction to derive the 

relationship between the molar flow rates of A and Z, equation (21). Then express the outlet molar flow 

rate of Z in terms of the fractional conversion of A, equation (22). Substitution of this expression into 

equation (20) and simplification leads to equation (23) for CZ, and substitution of that result into equation 

(18) gives the equation we need to calculate xb, equation (24).

 
!nZ = !nZ

0 +
!nA
0 − !nA
2

 (21)

 
!nZ = !nZ

0 +
!nA
0 − !nA

0 1− fA( )
2

 (22)

 
CZ =

2 !nZ
0 + !nA

0 fA
2 !V 0 = 2CZ

0 !V 0 +CA
0 !V 0 fA

2 !V 0 = 2CZ
0 +CA

0 fA
2

 (23)

xb = −xa
2CZ

0 +CA
0 fA

2
 (24)

Thus, we can generate a set of (xb,y) data using equations (24) and (15), and again the model has 

one independent variable and no intercept. That is all the information we need in order to fit equation (19) 

to the experimental data. Upon doing so, using whichever linear least squares fitting tool one chooses to 

employ, the resulting output shows that the correlation coefficient, r2, is equal to 0.9996 and the best 

value of the slope, m, is equal to 0.0014 ± 0.00001 (95% confidence limits based upon the data given in 

the problem statement). Figure 2 shows the corresponding model plot.

In this case, the correlation coefficient is very close to 1.0 and the data fall almost exactly on the 

line in the model plot, so this model does offer a sufficiently accurate description of the experimental data. 

We see from equation (8) that the slope, m, is equal to the rate coefficient, k, thus, the best value for k in 

equation (16) is 0.0014 ± 0.00001 L0.5 mol-0.5 min-1.
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Figure 2. Model plot for part (b) showing the experimental data as points and the model’s predictions as a 
line.

For part (c)  the process is again the same, the difference being that the rate expression is given by 

equation (25) and x is defined by equation (26). The resulting plot, Figure 3, shows that the second order 

rate expression is not acceptable. There is significant scatter of the data about the line and the correlation 
coefficient is only 0.8378. Not surprisingly (since equation (16) offered a good fit to the data), the rate 

expression given in equation (25) is not satisfactory.

rA,1 = −kCACZ  (25)

x = −VfluidCACZ  (26)
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Figure 3. Model plot for part (c) showing the experimental data as points and the model’s predictions as a 
line.

Calculation Details Using MATLAB
Three MATLAB script files are provided with Supplemental Unit S3. The file names indicate the 

number of independent variables and whether or not the model has an intercept. The script named 

FitLinmSR is used when the model has one independent variable (x) and does not include the intercept 

(b). FitLinmbSR is used when the model has one independent variable and does include the intercept, 

and FitLinSR is used when the model has two or more independent variables. (With MATLAB, when the 

model has two or more independent variables, it must have an intercept; Supplemental Unit S3 describes 
how to convert a model without an intercept into a model that has an intercept.) In this problem the model 

has one independent variable, but no intercept, so the script file named FitLinmSR will be used. To do so, 
the script file must be located in the current MATLAB working directory or in the MATLAB search path.

Before executing FitLinmSR, the experimental values of x must be stored in a vector named x, and 

the experimental values of y must be stored in a vector named y_hat. Upon execution of the script, it will 

return the correlation coefficient, r2, as r_squared, the slope, m, as m, and the 95% confidence limits on 

the slope, λm, as m_u. It will also generate a model plot. The commands for performing these tasks can be 

entered at the MATLAB command prompt, but here they have been recorded in the MATLAB files named 
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Example_13_1a.m, Example_13_1b.m and Example_13_1c.m which accompany this solution. Since the 
three files are very, very similar, only the solution for part (a) will be described here.

Example_13_1a.m begins with the entry of the data from the problem statement. The values of x 

and y are then calculated and stored in the arrays x and y_hat. FitLinmSR is then called to perform the 

fitting. This is shown in Listing 1. This generates the model plot shown previously as Figure 1 and the 

additional output shown in Listing 2. 

Listing 1. Code showing entry of the data from the problem statement, calculation of the vectors 
containing the dependent and independent variables and fitting of the model to the data.

Listing 2. Output generated upon execution of Example_13_1a.m.

% MATLAB file used in the solution of part (a) of Example 13.1 of 
% "A First Course on Kinetics and Reaction Engineering."

% Data provided in the problem statement, in consistent units
V=1.7; % L
tau=8.5; % min
CA0=[0.10 0.25 0.30 0.48 0.65 0.79 0.93 1.00 1.33 1.50 1.68 2.00]'; % mol/L
CZ0=[0.75 0.37 0.19 0.61 2.48 3.07 0.09 3.39 1.27 1.70 1.94 0.47]'; % mol/L
fA=[9.93E-03 6.93E-03 4.95E-03 8.92E-03 1.81E-02 1.98E-02 3.61E-03 2.09E-02 

1.28E-02 1.53E-02 1.59E-02 8.08E-03]';

% Calculate x and y of the linearized model equation
x = -V*CA0.*(1-fA);
y_hat = (-V/tau)*CA0.*fA;

% Use the MATLAB script file "FitLinmSR.m" from "A First Course on
% Kinetics and Reaction Engineering" to fit a straight line through the
% origin to the data.
FitLinmSR

>> Example_13_1a

r_squared =

    0.6488

m =

    0.0015

m_u =

   3.8261e-04
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