
A First Course on Kinetics and Reaction Engineering

Example 10.1

Problem Purpose
This problem illustrates the generation of a rate expression from a mechanism for a heterogeneous 

catalytic reaction. In doing so, it also illustrates the use of the equation for the conservation of catalytic 
sites, and it shows how the assumption of a most abundant surface intermediate can simplify a 

mechanistic rate expression.

Problem Statement
The oxidation of carbon monoxide is given in equation (1) below. Suppose that the mechanism is 

given by equations (2) through (6) and that step (6) is rate-limiting. Derive a rate expression in terms of 

only the partial pressures of the reagents and constants. How does the result change if O−✳ is the most 
abundant surface intermediate?

Overall reaction:

2 CO + O2 ⇄ 2 CO2 (1)

Proposed mechanism:

O2 + ✳ ⇄ O2−✳  (2)

CO + O2−✳ ⇄ CO3−✳  (3)

CO3−✳ ⇄ CO2 + O−✳  (4)

CO + O−✳ ⇄ CO2−✳  (5)

CO2−✳ → CO2 + ✳  (6)

Problem Analysis
This problem asks us to generate a rate expression from a mechanism. It states that there is a rate-

determining step, so the overall rate will be set equal to the rate of that step, and all other steps will be 

assumed to be quasi-equilibrated. The quasi-equilibrium expressions will be combined with the equation 
for the conservation of catalytic sites and solved to obtain expressions for the surface coverages. These 

will then be substituted into the rate expression. That rate expression then will be further simplified using 
the assumption that O−✳ is the most abundant surface intermediate.

Problem Solution
Since step (6) is rate-determining, the overall rate is equal to the forward rate of step (6). Being 

elementary surface reactions, the rate expressions for each of the mechanistic steps are given by 

AFCoKaRE, Example X.Y  1



equation (7).  Thus, setting the rate of the non-elementary reaction (1) equal to the forward rate of step (6) 
leads to equation (8).
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r1 = r6 = k6, fθCO2  (8)

This is not acceptable because it contains the surface concentration of a reactive intermediates, 

namely CO2−✳. To eliminate the surface concentrations of the reactive intermediates, it can be noted that 
since step (6) is rate determining, then all other steps may be assumed to be quasi-equilibrated. Thus, 

equations (9) through (12) can be written expressing that steps (2) through (5) are quasi-equilibrated. 

Additionally, there is conservation of total catalyst sites, leading to equation (13). In these equations, θv 
denotes the fraction of the surface sites that are vacant and the θi’s represent the fractional coverage of 

the active sites by the various species, i.

K2 =
θO2
PO2θv

 (9)

K3 =
θCO3
PCOθO2

 (10)

K4 =
PCO2θO
θCO3

 (11)

K5 =
θCO2
PCOθO

 (12)

1= θO2 +θCO3 +θO +θCO2 +θv  (13)

Equations (9) through (13) can be solved yielding expressions for the surface concentrations of the 
reactive intermediates in terms of only constants and partial pressures of stable species. The results are 

given in equations (14) through (18).

θv =
1

1+ K2PO2 + K2K3PCOPO2 +
K2K3K4PCOPO2

PCO2
+
K2K3K4K5PCO

2 PO2
PCO2

 (14)
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θO2 =
K2PO2

1+ K2PO2 + K2K3PCOPO2 +
K2K3K4PCOPO2

PCO2
+
K2K3K4K5PCO

2 PO2
PCO2

 (15)

θCO3 =
K2K3PCOPO2

1+ K2PO2 + K2K3PCOPO2 +
K2K3K4PCOPO2

PCO2
+
K2K3K4K5PCO

2 PO2
PCO2

 (16)

θO =

K2K3K4PCOPO2
PCO2

1+ K2PO2 + K2K3PCOPO2 +
K2K3K4PCOPO2

PCO2
+
K2K3K4K5PCO

2 PO2
PCO2

 (17)

θCO2 =

K2K3K4K5PCO
2 PO2

PCO2

1+ K2PO2 + K2K3PCOPO2 +
K2K3K4PCOPO2

PCO2
+
K2K3K4K5PCO

2 PO2
PCO2

 (18)

Finally equation (18) can be substituted into equation (8) leading to the desired rate expression in 

terms of only constants and partial pressures of stable species, equation (19).

r1 =

k6, f K2K3K4K5PCO
2 PO2

PCO2

1+ K2PO2 + K2K3PCOPO2 +
K2K3K4PCOPO2

PCO2
+
K2K3K4K5PCO

2 PO2
PCO2

r1 =
k6, f K2K3K4K5PCO

2 PO2
PCO2 + K2PO2PCO2 + K2K3PCOPO2PCO2 + K2K3K4PCOPO2 + K2K3K4K5PCO

2 PO2
 (19)

If O-✳ is the most abundant surface intermediate, then equations (20) through (23) apply.

 θO ≫θv  (20)

 θO ≫θCO2  (21)

 θO ≫θCO3  (22)

 θO ≫θO2  (23)

Substituting equations (14) and (17) into equation (20) leads to equation (24). Substituting 
equations (17) and (18) into equation (21) leads to equation (25). Substituting equations (16) and (17) into 
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equation (22) leads to equation (26). Substituting equations (15) and (17) into equation (23) leads to 
equation (27).

 K1aK1bK1cPCOPO2 ≫ PCO2  (24)

 K1aK1bK1cPCOPO2 ≫ K1aK1bK1cK1dPCO
2 PO2  (25)

 K1aK1bK1cPCOPO2 ≫ K1aK1bPCO2PCOPO2  (26)

 K1aK1bK1cPCOPO2 ≫ K1aPO2PCO2  (27)

Equations (24) through (27) show that the fourth term in the denominator of equation (19) is much 

larger than each of the other terms in the denominator. As a consequence, those terms can be dropped 
leaving only the fourth term as the entire denominator. Upon doing so, some quantities appear in both the 

numerator and the denominator, and they can be canceled. As a result, the original rate expression given 
in equation (19) reduces to equation (28) if O-✳ is the most abundant surface intermediate.

r1 =
k6, f K2K3K4K5PCO

2 PO2
PCO2 + K2PO2PCO2 + K2K3PCOPO2PCO2 + K2K3K4PCOPO2 + K2K3K4K5PCO

2 PO2

≈
k6, f K2K3K4K5PCO

2 PO2
K2K3K4PCOPO2

r1 = k6, f K5PCO  (28)
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