
A First Course on Kinetics and Reaction Engineering

Activity 9.2

Problem Purpose
This problem illustrates the use of a Lineweaver-Burk type of plot to determine the values of the 

constants in a Michaelis-Menten rate expression with inhibition.

Problem Statement
Suppose the enzyme-catalyzed reaction (1) is believed to obey Michaelis-Menten kinetics with 

inhibition, equation (2). This is the rate expression derived in Example 9.3. To test this, the rate of 

production of P was measured as a function of the concentrations of S and I using a 500 cm3 chemostat 
and 10.0 mg of enzyme. The temperature, pressure and solution volume were all constant over the 

course of the experiments. On the basis of the resulting data, presented in Table 1, does equation (2) 

offer an acceptable description of the reaction rate? If so, what are the best values of Vmax, KI and Km?

Table 1. Data for Activity 9.2

CS (M) CI (M) rP (M/min)

0.100 0.100 0.000798

0.086 0.050 0.000838

0.080 0.005 0.000912

0.075 0.001 0.000915

0.070 0.100 0.000745

0.063 0.050 0.000819

0.056 0.005 0.000898

0.048 0.001 0.000901

0.047 0.100 0.000689

0.041 0.050 0.000771

0.036 0.005 0.000896

0.030 0.001 0.000890

0.025 0.100 0.000563

0.021 0.050 0.000664

0.015 0.005 0.000846

0.010 0.001 0.000855
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S → P (1)

rP,1 =
Vmax S[ ]

Km + KI I[ ]+ S[ ]  (2)

Problem Analysis
We will follow the same approach as was used in Example 9.4. Specifically, the rate expression will 

be linearized by taking its reciprocal. The experimental data will then be used to compute values for the 

new independent and dependent variables. A linear model (this time with 2 independent variables) will be 

fit to those values, and the accuracy of the fit will be assessed. If the fit is found to be sufficiently accurate, 
the best values of the three model parameters, and their uncertainties will be calculated.

Problem Solution

Taking the reciprocal of rate expression (2) yields equation (3). Vmax, KI and Km are constants, so 

this equation has a linear form like that shown in equation (4) if y, x1 and x2 are defined as shown in 

equations (5), (6) and (7). The slopes, m1 and m2, and the y-intercept, b, are related to the original kinetic 

parameters according to equations (8), (9) and (10).
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y = 1

rP,1

 (5)

  
x1 =

1
CS

 (6)

  
x2 =

CI

CS

 (7)

  
m1 =

Km

Vmax

⎛

⎝⎜
⎞

⎠⎟
 (8)

  
m2 =

KI

Vmax

⎛

⎝⎜
⎞

⎠⎟
 (9)

  
b = 1

Vmax

 (10)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Activity 9.2 2



In this problem, we are asked to test whether a mathematical model offers an accurate 
representation of experimental data. Problems of this type can be solved by fitting the model equation to 

the data and then assessing the quality of the fit statistically and visually. In this particular problem, the 
model equation is linear, so linear least squares can be used to fit it to the experimental data (see 

Supplemental Unit S3). Linear least squares fitting can be performed manually, using a calculator, using a 
spreadsheet or using mathematics software. No matter which tool one chooses to use, it will be 

necessary to provide the following information and input data:

• the number of independent (x) variables

• whether or not the model includes an intercept (b)

• a set of experimental data points, each of which consists of a value for the dependent variable (y) 

and corresponding values for each of the independent variables (xi)

In this particular problem, the model, equation (4), has two independent variables, x1 and x2, as well 

as a y-intercept, b. Each row in Table 1 represents one data point. For each of these data points, values 

of x1, x2 and y can be calculated using the values of CS, CI and rP for that data point and equations (5), (6) 

and (7). When this information and input data are provided to whichever linear least squares fitting tool 

one chooses to employ, the resulting output shows that the correlation coefficient, r2, is equal to 0.999, 

the best value of the slope, m1, is equal to 0.67 ± 0.16 min, the best value of the slope, m2, is equal to 166 

± 3 min M-1 and the best value of the y-intercept, b, is equal to 1084 ± 7 min M-1. (Here the uncertainties 

are the 95% confidence limits, other least squares fitting tools might provide different measures of the 

uncertainties in the fitted parameter values.) In most cases, a parity plot like that shown in Figure 1 and 
residuals plots like those shown in Figures 2 and 3 are also provided, but if such plots are not provided, 

they can be generated easily.

Before the best values for m1, m2 and b can be accepted, one must decide whether the final model 

is sufficiently accurate. In this case, the accuracy of the model can be assessed using the correlation 

coefficient, the parity plot and the residuals plots. The closer the correlation coefficient is to a value of 1.0, 
the better the fit of the model to the data. In this case, the correlation coefficient of 0.999 indicates a very 

good fit. Additionally, if the fit is accurate, then the deviation of the data points in the parity plot from the 
diagonal line should be small. This can be seen to be the case for this problem by examination of Figure 

1. Finally, if the fit is accurate, the residuals should scatter randomly about zero in the residuals plots; 
there should not be any apparent trends in the scatter of the data about the line in the figures. 

Examination of Figures 2 and 3 shows this to be true for the present problem. Thus, the model does 
appear to offer a sufficiently accurate representation of the experimental data, and the values of the 

slopes and intercept can accepted.
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Figure 1. Parity plot comparing the experimental value of y to the value predicted by the fitted model.

Figure 2. Residuals plot showing the difference between the experimental and model-predicted values of 
y as a function of x1.
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Figure 3. Residuals plot showing the difference between the experimental and model-predicted values of 
y as a function of x2.

Having found the model to be acceptable, the problem additionally asks for the best values of Vmax, 

KI and Km. Equations (8) through (10) can be rearranged to get equations (11), (12) and (13), and these 

can be used to calculate Vmax, KI and Km from the values of the slopes, m1 and m2, and the intercept, b.

Vmax =
1
b

 (11)

Km = m1Vmax =
m1

b
 (12)

KI = m2Vmax =
m2

b
 (13)

A differential error analysis shows that if a model parameter, p, is related to the slopes, mi, and 

intercept, b, of a linearized form of the model, as in equation (14), then the uncertainty in that parameter, 

λp, is related to the slope, intercept and their uncertainties, λmi
and λb, according to equation (15). 

Applying that relationship to the present problem shows that the uncertainties in Vmax, KI and Km should 

be calculated using equations (16) through (18).

p = f m,b( )  (14)
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Using the values of m1, λm1
, m2, λm2

, b and λb resulting from fitting the model to the data and 

equations (11) through (13) and (16) through (18), the best values of the parameters can be calculated to 

be Vmax = (9.22 ± 0.06) x 10-4 M min-1, Km = (6.18 ± 1.47) x 10-4 M and KI = 0.153 ± 0.003.

Calculation Details Using MATLAB
Three MATLAB script files are provided with Supplemental Unit S3. The file names indicate the 

number of independent variables and whether or not the model has an intercept. The script named 

FitLinmSR is used when the model has one independent variable (x) and does not include the intercept 

(b). FitLinmbSR is used when the model has one independent variable and does include the intercept, 

and FitLinSR is used when the model has two or more independent variables. (With MATLAB, when the 
model has two or more independent variables, it must have an intercept; Supplemental Unit S3 describes 

how to convert a model without an intercept into a model that has an intercept.) In this problem the model 
has two independent variables, so the script file named FitLinSR will be used. To do so, the script file 

must be located in the current MATLAB working directory or in the MATLAB search path.

Before executing FitLinSR, the experimental values of x1 and x2 must be stored in a matrix named 

x, and the experimental values of y must be stored in a vector named y_hat. More specifically, the first 

column in matrix x must be a vector containing the values of x1, the second column in matrix x must be a 

vector containing the values of x2 and the third column in matrix x must contain the value 1.0 in every row, 

as described in Supplemental Unit S3.  Upon execution of the script, it will return the correlation 

coefficient as r_squared, the slopes as a vector named m, the 95% confidence limits on the slopes as a 

vector named m_u, the intercept as b and the 95% confidence limits on the intercept as b_u. It will also 

generate a parity plot and two residuals plots.

Therefore the following steps must be performed in order to solve this problem using MATLAB:

• enter the values of CS as a vector (here I named it CS)

• enter the values of CI as a vector (here I named it CI)
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• enter the values of rP as a vector (here I named it rP)

• calculate the values of x1 and x2 and store them, along with a vector of 1.0’s, in a matrix named x

• calculate the values of y and store them in a vector named y_hat
• execute the MATLAB script file named FitLinmb

• use the returned values of m, m_u, b and b_u to calculate Vmax (here I named it Vmax), Km (here I 

named it Km), KI (here I named it KI), λVmax (here I named it lambda_Vmax), λKm
(here I named 

it lambda_Km) and λKI
(here I named it lambda_KI) according to equations (11) through (13) 

and (16) through (18)

Listing 1 shows how the values of CS were saved as a vector named CS. The values of CI and rP 

were saved in an analogous manner. Listing 2 shows how the values of x1, x2 and y are calculated as 

vectors, how the matrix x is created, and how the parameters Vmax, KI and Km and their uncertainties are 

calculated after executing FitLinSR. The code shown in Listings 1 and 2 could be performed at the 

MATLAB command prompt. Instead, I put them in a MATLAB script file named Activity_9_2.m which 
accompanies this example. The output generated upon execution of Activity_9_2 in MATLAB is shown in 

Listing 3.

Listing 1. MATLAB code used to store the values of CS from Table 1 in a vector named CS.

CS = [0.100

0.086

0.080

0.075

0.070

0.063

0.056

0.048

0.047

0.041

0.036

0.030

0.025

0.021

0.015

0.010];
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Listing 2. MATLAB code that prepares the data, executes FitLinSR and uses the results to calculate the 
values of the model parameters and their uncertainties.

% Calculate the x and y_hat values

x1 = 1./CS;

x2 = CI./CS;

y_hat = 1./rP;

% Form the x matrix

x = [x1 x2 ones(length(x1),1)];

% Use the MATLAB script file "FitLinmbSR.m" from "A First Course on

% Kinetics and Reaction Engineering" to fit a straight line with slope and

% intercept to the data

FitLinSR

% Calculate Vmax and its 95% confidence limits

Vmax = 1/b

lambda_Vmax = b_u/b^2

% Calculate Km and its 95% confidence limits

Km = m(1)*Vmax

lambda_Km = sqrt(m_u(1)^2/b^2 + (m(1)*b_u/b^2)^2)

% Calculate KI and its 95% confidence limits

KI = m(2)*Vmax

lambda_KI = sqrt(m_u(2)^2/b^2 + (m(2)*b_u/b^2)^2)
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Listing 3. MATLAB command window output upon running Activity_9_2.m

>> Activity_9_2

r_squared =

    0.9988

m =

    0.6697

  165.6725

m_u =

    0.1594

    3.4234

b =

   1.0845e+03

b_u =

    6.7188

Vmax =

   9.2209e-04

lambda_Vmax =

   5.7127e-06

Km =

   6.1753e-04

lambda_Km =

   1.4701e-04

KI =

    0.1528

lambda_KI =

    0.0033
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