
A First Course on Kinetics and Reaction Engineering

Example 9.3

Problem Purpose
This problem illustrates the generation of a rate expression for an enzymatic reaction involving an 

enzyme inhibitor.

Problem Statement
Suppose that enzyme E catalyzes the conversion of substrate S to product P, but it is inhibited by 

inhibitor I. The overall reaction is given by equation (1), and the mechanism is given by equations (2) 

through (4).

S → P (1)

E + S ⇄ E-S (2)

E + I ⇄ E-I (3)

E-S → E + P (4)

Assume that step (4) is effectively irreversible and derive a Michaelis-Menten type of rate 

expression for this system. You may assume that the concentration of the free inhibitor can be easily 
measured, so that its presence in the rate expression is acceptable.

Problem Analysis
This problem asks us to derive a rate expression from a mechanism. There is no rate-determining 

step in the mechanism, so the overall rate of production of P will be used as the rate expression for 
reaction (1) with respect to P. That rate expression will contain concentrations of non-complexed and 

complexed enzyme, which might be difficult to measure. These concentrations can be eliminated by 
applying the Bodenstein steady state approximation along with an expression for the conservation of the 

enzyme.

Problem Solution
Before deriving a rate expression, one should check that there is a linear combination of the 

mechanistic steps that is equal to the overall, macroscopically observed reaction. Here it is easy to see 

that reaction (1) is equal to reaction (2) plus reaction (4), so that requirement is met. Since no rate-
determining step has been specified, we next choose a reactant or product of the overall reaction and 

generate an expression for the net rate of the overall reaction with respect to the chosen species that 
equals the sum of its rates of generation in the mechanistic steps. Here we will choose the product, P, but 

the exact same answer would be obtained if we chose the substrate, S. The rate of the overall reaction 
with respect to P is found using equation (5). Expanding the summation is trivial because the 

stoichiometric coefficient of P is zero in steps (2) and (3), so that the summation only contains one term 
corresponding to step (4). This leads to the rate expression given in equation (6)
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rP,1 = k4, f E − S⎡⎣ ⎤⎦ − k4,r E⎡⎣ ⎤⎦ P⎡⎣ ⎤⎦  (6)

The problem statement also specifies that step (4) is irreversible. This means that the rate of step 

(4) in the reverse direction can be set equal to zero, resulting in the rate expression given in equation (7).

  
rP,1 = k4, f E − S⎡⎣ ⎤⎦  (7)

This rate expression is not acceptable because it contains the concentration of a reactive 

intermediate (the enzyme-substrate complex). To eliminate this reactive intermediate concentration, the 
Bodenstein steady state approximation, equation (8), can be applied to each reactive intermediate.
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In the present problem, there are three reactive intermediates, E, E-I and E-S, so equation (8) can 
be written three times, once for each of the reactive intermediates. However, based upon our experience 

(and the results of Example 9.1), we know that only two of the three resulting equations will be 
mathematically independent. Consequently, we will only apply the Bodenstein steady state approximation 

to E-S, leading to equation (10) and to E-I, leading to equation (12). In doing so, the term corresponding 
to the rate of reaction (4) in the reverse direction was dropped since the problem statement declares that 

step to be irreversible.

0 = −1( ) k2, f E[ ] S[ ]− k2,r E − S[ ]{ }+ 1( )k4, f E − S[ ]  (9)

0 = −k2, f E[ ] S[ ]+ k2,r E − S[ ]+ k4, f E − S[ ]  (10)

0 = 1( ) k3, f E[ ] I[ ]− k3,r E − I[ ]{ }  (11)

0 = k3, f E[ ] I[ ]− k3,r E − I[ ]  (12)

These two equations clearly can’t be solved to get expressions for the concentrations of the three 
reactive intermediates. An additional relationship is needed, and this comes from the conservation of 

catalyst or enzyme as expressed in equation (13). In this problem the non-complexed catalyst is E and 

the complexed forms are E-I and E-S. Thus, letting E0 represent the equivalent concentration of enzyme 

before it was added to the system, equation (14) results.
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E0 = E[ ]+ E − S[ ]+ E − I[ ]  (14)

Now equations (10), (12) and (14) can be solved to obtain expressions for the concentrations of the 

reactive intermediates in terms of constants and the concentrations of stable species. This can be done 
manually or using symbolic algebra software. In either case, the results are given in equations (15), (16) 

and (17).

E[ ] =
k3,r k2,r + k4, f( )E0

k2, f k3,r S[ ]+ k2,rk3, f + k3, f k4, f( ) I[ ]+ k2,rk3,r + k3,rk4, f( )  (15)

E − I[ ] =
k3, f k2,r + k4, f( )E0 I[ ]

k2, f k3,r S[ ]+ k2,rk3, f + k3, f k4, f( ) I[ ]+ k2,rk3,r + k3,rk4, f( )  (16)

E − S[ ] = k2, f k3,rE
0 S[ ]

k2, f k3,r S[ ]+ k2,rk3, f + k3, f k4, f( ) I[ ]+ k2,rk3,r + k3,rk4, f( )  (17)

Finally, substituting equation (17) into equation (7) gives the desired result, equation (18). 

rP,overall =
k2, f k3,rk4, f E

0 S[ ]
k2, f k3,r S[ ]+ k2,rk3, f + k3, f k4, f( ) I[ ]+ k2,rk3,r + k3,rk4, f( )  (18)
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