
A First Course on Kinetics and Reaction Engineering

Example 9.1

Problem Purpose
This problem illustrates the generation of a rate expression for an enzymatic reaction where the use 

of catalyst conservation is required. In doing so, it illustrates the derivation of the Michaelis-Menten rate 
expression.

Problem Statement
Michaelis-Menten kinetics can be used to describe the enzymatic rate of conversion of a substrate 

to a product with the overall, macroscopically observed reaction (1), where S is used to denote the 
substrate and P is used to denote the product. The mechanism is given in equations (2) and (3), where E 

denotes free (not complexed) enzyme and E-S denotes an enzyme-substrate complex.

S → P (1)

E + S ⇄ E-S (2)

E-S → E + P (3)

Assume step (3) is irreversible and use the Bodenstein steady state approximation to derive a rate 

expression for the overall, macroscopically observed reaction. 

Problem Analysis
The problem asks us to derive a rate expression based on a mechanism. The problem does not 

indicate that there is a rate-determining step, so we will us the Bodenstein steady state approximation. To 

do so, we will generate a rate expression that sets the net rate of generation of the product equal to the 
sum of its rates of generation in the mechanistic steps. We will then identify the reactive intermediates 

and set their net rates of generation equal to zero. The resulting equations will not be mathematically 
independent because a catalyst is involved, so we will replace one of them with the equation for 

conservation of catalyst. The resulting set of equations will be solved to obtain expressions for the 
concentrations of the reactive intermediates, and those will be substituted, as necessary, into the rate 

expression.

Problem Solution
We should first check the mechanism to make sure that there is a linear combination of the steps 

that is equal to the overall reaction. It can be seen by inspection that the sum of steps (2) and (3) gives 

reaction (1), so the mechanism is valid. Since no rate-determining step has been specified, we next 
choose a reactant or product of the overall reaction and generate an expression for the rate of the overall 

reaction with respect to the chosen species. Here we will choose the product, P, but the exact same 
answer would be obtained if we chose the substrate, S. The rate of the overall reaction with respect to P 

is equal to the sum of its rate of generation in each of the mechanistic steps as expressed in equation (4). 
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Expanding the summation and the continuous products leads to equation (5). The problem statement also 
specifies that step (3) is irreversible. This means that the rate of step (3) in the reverse direction can be 

set equal to zero, resulting in the rate expression given in equation (6).
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rP,1 = k3, f E − S⎡⎣ ⎤⎦ − k3,r E⎡⎣ ⎤⎦ P⎡⎣ ⎤⎦  (5)

  
rP,1 = k3, f E − S⎡⎣ ⎤⎦  (6)

This rate expression is not acceptable because it contains the concentration of a reactive 
intermediate (the enzyme-substrate complex). To eliminate this reactive intermediate concentration, the 

Bodenstein steady state approximation, equation (7), can be applied to each reactive intermediate. In this 
problem there are two reactive intermediates, E and E-S. Applying equation (7) to E and E-S yields 

equations (8) and (9). The rate of reaction (3) in the reverse direction was set equal to zero when 
generating these equations because the problem states that reaction (3) is irreversible.
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∑  i = reactive intermediate (7)

0 = −k2, f E[ ] S[ ]+ k2,r E − S[ ]+ k3, f E − S[ ]  (8)

0 = k2, f E[ ] S[ ]− k2,r E − S[ ]− k3, f E − S[ ]  (9)

The two equations are identical, so they can’t be solved to get expressions for the concentrations of 

the reactive intermediates in terms of constants and the concentrations of stable species. An additional 
relationship is needed, and this comes from the conservation of catalyst or enzyme as expressed in 

equation (10). In equation (10), E0 denotes the total amount of enzyme in the system, expressed as its 

equivalent concentration (i. e. its concentration if it were added to the system and it all remained non-

complexed). While neither [E] nor [E-S] are typically known or easily measured, E0 is known because it 

can be measured at the time the enzyme is being added to the system.

E0 = E[ ]+ E − S[ ]  (10)

Now either equation (8) or equation (9) can be solved along with equation (10) to obtain 
expressions for the concentrations of the reactive intermediates in terms of constants and the 

concentrations of stable species. This can be done manually, or software for symbolic algebra can be 
used. In either case, the results are given in equations (11) and (12).
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E[ ] = E0

1+
k2, f
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S[ ]

 (11)

E − S[ ] = k2, f E
0 S[ ]

k2.r + k3, f + k2,r S[ ]  (12)

Finally, substituting equation (12) into equation (6) gives the desired result, equation (13). 

Comparing equation (13) to equation (9.5) from the informational reading, it can be seen that the two 

equations are equivalent if Vmax and Km are defined as in equations (14) and (15). Since E0 is a constant 

with a known value, its presence in the rate expression presents no problems.

rP,1 =
k2, f k3, f E

0 S[ ]
k2,r + k3, f + k2, f S[ ] =

k3, f E
0 S[ ]

k2,r + k3, f
k2, f

+ S[ ]
 (13)

  
Vmax = k3, f E0  (14)

  
Km =

k2,r + k3, f

k2, f

 (15)
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