A First Course on Kinetics and Reaction Engineering Unit 7. The Steady State Approximation

Definitions

steady state - value(s) not changing with time

kinetically insignificant (reaction) - a mechanistic step for which the rate does not affect the rate of the apparent, macroscopically observed reaction

Nomenclature

- [] symbols indicating the concentration or, if a gas, partial pressure of the species within the brackets
- $v_{i,j}$ stoichiometric coefficient of species i in reaction j
- k_j rate coefficient for reaction j, an additional subscripted "f" indicates rate coefficient for the absolute rate in the forward direction and "r" denotes the reverse direction
- $r_{i,j}$ rate of generation of species i via reaction j, or, equivalently, the rate of reaction j with respect to species i
- r_j generalized net rate of reaction j

Equations

$$r_{i,j} = \sum_{\substack{s = \text{all} \\ \text{steps}}} V_{i,s} \left(k_{s,f} \prod_{\substack{m = \text{all} \\ \text{reactants}}} \left[m \right]^{-v_{m,s}} - k_{s,r} \prod_{\substack{n = \text{all} \\ \text{products}}} \left[n \right]^{v_{n,s}} \right)$$
(7.1)

$$r_s = 0$$
 $s = \text{kinetically insignificant step}$ (7.2)

$$r_s = k_{s,f} \prod_{i=\text{all}} [i]^{-v_{i,s}}$$
 $s = \text{irreversible step}$ (7.3)

$$0 = \sum_{\substack{s = \text{all} \\ \text{steps}}} v_{i,s} \left(k_{s,f} \prod_{\substack{m = \text{all} \\ \text{reactants}}} \left[m \right]^{-v_{m,s}} - k_{s,r} \prod_{\substack{n = \text{all} \\ \text{products}}} \left[n \right]^{v_{n,s}} \right) \quad i = \text{reactive intermediate}$$
 (7.4)