
A First Course on Kinetics and Reaction Engineering

Unit 5. Empirical and Theoretical Rate Expressions

Overview
This course is divided into four parts, I through IV. Part II is focused upon modeling the rates of 

chemical reactions, that is, rate expressions. Rate expressions for a particular reaction are generated by 
fitting experimental reactor data to a reactor model that includes a mathematical function being tested for 

its suitability as a rate expression. Unit 5 begins by introducing power-law rate expressions, which are 
often used as empirical rate expressions, as long as they prove to be accurate. An elementary reaction is 

then defined, and two theories are presented that allow the mathematical form of the rate expression for 
an elementary reaction to be predicted. These theories are known as Collision Theory and Transition 

State Theory.

Learning Objectives
Upon completion of this unit, you should be able to define, in words, the following terms:

• empirical rate expression

• reaction order, overall and with respect to a given species
• elementary reaction

• collision cross section
• molecularity

• steric limitation
• steric factor

• potential energy surface
• activated complex

• transition state
• saddle point

• activation energy
• reaction coordinate

• transmission coefficient
Upon completion of this unit, you should be able to write the defining equation for the following quantities:

• power-law rate expression
• Monod equation

• general form of the rate expression for an elementary reaction as predicted
- by collision theory

- by transition state theory
Upon completion of this unit, you should be able to perform the following specific tasks and be able to 

recognize when they are needed and apply them correctly in the course of a more complex analysis:
• Determine the kinetic reaction order, both overall and with respect to any particular species, given a 

rate expression (see Example 6.1)
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• Write a mathematical term by which any rate expression can be multiplied so that the resulting rate 
expression equals zero when it is evaluated at equilibrium conditions (see Example 5.1)

• Explain why the stoichiometric coefficients in an elementary reaction must be integers (see 
Example 5.2 and 5.3)

• State and apply the principle of microscopic reversibility (see Example 5.2 and 5.3)
• Describe the information contained in the Boltzmann distribution

• State the assumptions and outline the procedure used to derive a rate expression using collision 
theory (see Example 5.5)

• Calculate the steric factor for an elementary gas phase reaction, given the observed reaction rate 
and judge whether it is reasonable for the reaction in question

• State the assumptions and outline the procedure used to derive a rate expression using transition 
state theory (see Example 5.5)

• Calculate a rate coefficient using collision theory or transition state theory, given appropriate data 
(see Example 5.4)

• Identify and describe the limitations of simple collision theory and transition state theory

Information
It was pointed out in Unit 4 that rate expressions are generated by selecting mathematical functions 

and testing them using experimental data to determine whether they can accurately describe the variation 

of the rate with temperature, pressure and composition. Perhaps the simplest approach is to pick a 
function that is mathematically tractable. There is no theoretical basis in this type of selection, but for 

engineering purposes it is often the most attractive option. As long as the function that is selected 
displays the proper mathematical behavior (single valued and goes to zero at equilibrium conditions) and 

proves to be accurate, it should be acceptable for engineering purposes. This type of rate expression can 
be referred to as an empirical rate expression. “Empirical” means “based upon observation.” This is the 

situation here, the empirical rate expression is not selected on a theoretical basis, but instead for its 
combined convenience and accuracy.

Probably the most common empirical rate expression is the power-law rate expression given in 
equation (5.1) below.

  

rj = k j i⎡⎣ ⎤⎦
mi

i=all
species

∏  (5.1)

In this equation, the square bracket denotes a composition variable (typically either the molar 

concentration or, in a gas phase system, the partial pressure). The exponent mi is called the reaction 

order with respect to species i; in a power-law rate expression it can have any value including decimal 

fractions, positive or negative in sign. If mi is negative, the reaction rate is said to be inhibited by species 

i. If the values of mi for every species i are summed, the result is the overall reaction order. The reaction 

orders with respect to the species are treated as parameters for fitting the rate expression to the 
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experimental rate data. The rate coefficient, kj, also includes parameters. For example, if the Arrhenius 

expression is used to describe the rate coefficient, then the pre-exponential factor and the activation 
energy are parameters that can be used to fit the expression to experimental data.

The power-law expression given above might be suitable for an irreversible reaction, but generally it 
doesn’t satisfy the mathematical behavior expected of rate expressions in that it will not evaluate to zero if 

evaluated at equilibrium conditions. There is a way to ensure that any rate expression selected for testing, 
including the power-law expression above, will equal zero if it is evaluated at equilibrium conditions. This 

is done by multiplying the rate expression by the term given in equation (5.2)

  

1−

i⎡⎣ ⎤⎦
ν i , j

i=all
species
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⎭
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 (5.2)

In this term, Keq,j is the equilibrium constant for reaction j for the concentration or pressure units 

used in the numerator; the temperature dependence of the equilibrium “constant” is explicitly included 
here as a reminder that the equilibrium constant varies with temperature. Thus, for example, if partial 

pressures are used as the [i] terms, then Keq,j is the pressure form of the equilibrium constant. The 

exponent a is an additional parameter that can be used in fitting the rate expression to the experimental 

rate data. Notice that at compositions far away from the equilibrium composition, this term evaluates to 1 

while at the equilibrium composition it evaluates to zero. Thus, at conditions far from equilibrium, the rate 

will default to whatever rate expression is being multiplied by this factor, but as the conditions approach 
equilibrium, this factor will cause the rate to go to zero.

Thus, a more complete power-law rate expression is given in equation (5.3). That equation includes 

the factor to ensure the rate will be zero at equilibrium and it also explicitly incorporates Arrhenius 

temperature dependence for the rate coefficient.
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 (5.3)

For cell growth kinetics, a very common empirical rate expression is the Monod equation (see 

Example 4.4). The Monod equation has a form similar to theory-based equations for enzymatic reactions. 
However, the theory used in the enzymatic reactions does not apply directly to cell growth processes. As 

such, the Monod equation (5.4) must be considered to be empirical.

  
µ =

µmaxCS

Ks +CS

 (5.4)
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In this form of the Monod equation, µ is the specific growth rate (see Unit 4), µmax is an adjustable 

constant equal to the maximum growth rate, CS is the mass concentration of the substrate (nutrient) that 

is limiting cell growth, and Ks is a constant called the saturation constant. In this form, the equation cannot 

be used to describe cell growth where there are inhibition effects, multiple substrates, etc.
There are other kinds of empirical expressions in addition to those covered here. For example, 

Hougen and Watson described a family of empirical rate expressions that can be used to describe the 
rates of heterogeneous catalytic reactions [1].

Empirical rate expressions are often useful for engineering purposes because their mathematical 
form is convenient. However, for scientific purposes, rate expressions grounded in theory are often more 

useful. There are theories for reaction kinetics, but unfortunately, they only apply to a special kind of 
chemical reaction that is called an elementary reaction. An elementary reaction is a chemical reaction 

where the reaction equation, as written, is an exact description of a single reaction event that takes place 
at the molecular level. Most reaction equations only convey the overall stoichiometry of the process; they 

do not describe the exact molecular event that takes place. It is very important to understand that one can 
not tell whether a reaction is elementary just by looking at the equation. The HBr formation reaction given 

in equation (5.5) looks very simple, and it is easy to imagine a single molecular event where an H2 
molecule and a Br2 molecule collide with each other and two HBr molecules are formed. Nonetheless, the 

formation of HBr does not take place in a single molecular event. The equation below simply conveys the 
fact that overall, for every two HBr molecules produced, there will be one H2 and one Br2 molecule 

consumed. Note that if a reaction is elementary, then all of the stoichiometric coefficients must be 
integers since, at the molecular level, there’s no such thing as a fraction of a molecule.

H2 + Br2  2 HBr (5.5)

According to the principle of microscopic reversibility, elementary reactions are always reversible. 
That is, if an elementary reaction takes place in the forward direction, it must also be possible for that 

reaction to take place in the reverse direction as a single molecular event. The rate in the reverse 
direction may be very small, but it must be non-zero.

Because elementary reactions are exact descriptions of a single molecular event, it is possible to 
develop theories for how they occur. In this unit, two theories for the rates of elementary reactions will be 

considered. The first is the collision theory for the rate of an elementary gas phase reaction. It is based 
upon the kinetic theory of gases, so clearly, it applies to gas phase reactions. The kinetic theory of gases 

treats a gas as a large number of particles which are small compared to the distance between them. They 
are assumed to be in constant motion, with the full mass of each particle located at a point in space. Each 

kind of molecule has its own collision radius. Beyond their collision radii, the molecules exert no forces on 
each other, but when the distance between two molecules equals the sum of those molecules’ collision 

radii, they exert an infinite repulsive force on each other. This is commonly described by saying the 
molecules behave as hard spheres when they collide, but there is a significant difference. Hard spheres 

can have angular momentum due to spin, and they can transfer angular momentum when they collide. 
Because the mass of these molecules is all located at a point, they cannot have angular momentum. 
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Collisions between these molecules are assumed to be perfectly elastic. This means that when two gas 
molecules collide there is no change in the total translational kinetic energy.

As the name implies, the basic assumption of collision theory is that reaction takes place as a result 
of collisions between molecules. The development of collision theory begins with the Boltzmann 

distribution (sometimes called the Maxwell-Boltzmann distribution) which describes how available energy 
is distributed amongst a collection of molecules. For a gas at a given temperature, the Boltzmann 

distribution tells how many molecules will have a velocity, u, which lies in the interval from u to u + du. For 

a system which contains both A molecules and B molecules, a Boltzmann distribution of the velocities of 

A molecules, relative to a B molecule, is given in equation (5.6). In equation (5.6) u is the velocity relative 

to a particular B molecule, dNA is the number of A molecules which have a velocity between u and u + du, 

NA* is the number of A molecules per unit volume, µ is the reduced mass given in equation (5.7) and kB is 

Boltzmann’s constant (1.3806 x 10-23 J K-1). In equation (5.7), mA and mB are the masses of the 

corresponding molecules.

  
dN A = 4πN A

∗u2( ) µ
2π kBT

⎛

⎝⎜
⎞

⎠⎟

3
2

exp −µu2

2kBT
⎛

⎝⎜
⎞

⎠⎟
du  (5.6)

 
µ =

mAmB

mA + mB

 (5.7)

As Figure 5.1a shows, an A molecule and a B 

molecule will collide when the distance between their 
centers equals the sum of their collision radii. As 

noted, the kinetic theory of gases doesn’t include any 
attractive or repulsive forces between molecules. As a 

consequence, when an A molecule travels through 
space (between collisions) its center traces out a 

straight line (not a curve), Figure 5.1b. This straight 
line can be used as the axis of a cylinder with a radius 

equal to the sum of the radii of an A molecule and a B 
molecule. Thus as the A molecule travels through 

space it sweeps out a cylindrical volume and a 
collision will occur if a B molecule has its center within 

this cylinder. The cross-sectional area of this cylinder 

is called the collision cross-section, σAB. The collision 

cross section is calculated using equation (5.8) where 

RA is the radius of an A molecule and RB is the radius 

of a B molecule.
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Figure 5.1. (a) Two point masses collide when 
the distance between them equals the sum of 
their collision radii. (b) As one point mass travels 
through space, it sweeps out a cylindrical 
volume. 



  σ AB = π RA + RB( )2
 (5.8)

It is next assumed that B molecules are uniformly distributed throughout space. If NB* equals the 

number of B molecules per unit volume, then on average there will be one B molecule in a volume, VB*, 

given by equation (5.9).

  
VB

∗ = 1
N B

∗  (5.9)

On average the cylindrical volume swept out by a single A molecule before it collides with a B 

molecule will equal VB*. Putting it another way, since on average there is one B molecule per volume VB*, 

then on average an A molecule will have to sweep out that volume in order to collide with a B molecule. 

The distance, L, traveled by the A molecule before it undergoes collision can then be found using 

equation (5.10) which comes from the formula for the volume of a cylinder.

 
L =

VB
∗

σ AB

 (5.10)

The amount of time, t, it takes the A molecule to travel the distance L can be found from its velocity, 

u, relative to the B molecule with which it collides using equation (5.11) which is a simple rearrangement 

of the definition of a velocity.

 
t = L

u
 (5.11)

Thus, equation (5.11) can be used to find how long it takes, on average, for an A molecule to collide 
with a B molecule. Substituting equation (5.10) into equation (5.11) leads to equation (5.12) for the 

amount of time required for an A molecule to have a single collision with a B molecule.

tone collision =
VB

∗

uσ AB

 (5.12)

The time calculated using equation (5.12) is the period of the collisions of the A molecule with B 

molecules. The frequency of collisions of a single A molecule with a B molecule is equal to the reciprocal 
of this period. This frequency is only for collisions between the single A molecule under consideration and 

a B molecule. If ν is used to represent frequency, the frequency of collisions of a single A molecule 

moving with a velocity u is then given by equation (5.13).

  
νcollisions of single A

molecule with velocity u
=

uσ AB

VB
∗  (5.13)

The frequency of collisions involving all A molecules that are moving with one particular velocity u is 

found by multiplying the frequency of collisions for a single A molecule moving with that velocity u (given 
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in equation (5.13)) by the total number of A molecules that are moving with that velocity (dNA). This is 

expressed in equation (5.14).

 

frequency of collisions
involving all A molecules
that have a velocity of u

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
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⎛

⎝

⎜
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⎜

⎞

⎠
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⎛

⎝
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⎞

⎠

⎟
⎟
⎟

  
νcollisions of all A

molecules with velocity u
=

uσ AB

VB
∗ dN A

∗  (5.14)

The frequency of all collisions between A molecules and B molecules (i. e. with any velocity) is 
found by summing equation (5.14) over all possible velocities. To do this, the Boltzmann distribution 

function, equation (5.6) is substituted into equation (5.14) along with substitution of equation (5.9). Since 
the velocity distribution is continuous, the summation takes the form of an integral over all possible 

velocities. The frequency of all collisions between A and B molecules is often called a collision number. 

The symbol Z'AB is used here to represent the frequency of all collisions between A molecules and B 

molecules. Equation (5.15) gives an expression for the collision number, Z'AB.

 

frequency of collisions
involving all A molecules

⎛
⎝⎜

⎞
⎠⎟
=

frequency of collisions
involving all A molecules
that have velocity u

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟all possible

velocities u

∑

  

′ZAB = νall A molecules
with velocity uall possible

velocities u

∑ =
uσ AB

VB
∗ dN A

∗⎛

⎝⎜
⎞

⎠⎟all possible
velocities u

∑

  
′ZAB = 4πN A

∗ N B
∗u3σ AB( ) µ

2π kBT
⎛

⎝⎜
⎞

⎠⎟

3
2

exp −µu2

2kBT
⎛

⎝⎜
⎞

⎠⎟
du

u=0

u=∞

∫

  
′ZAB = N A

∗ N B
∗σ AB

8kBT
πµ

 (5.15)

Some of the collisions between the A molecules and the B molecules will involve very small relative 

velocities, u. These are cases where the molecules just gently bump each other. Therefore, it is next 

assumed that there must be some minimum relative velocity associated with a collision if it is going to 

lead to reaction. Collisions which have at least this minimum velocity associated with them can be called 

reactive collisions, and their frequency can be represented by ZAB (no prime). The frequency of collisions 

involving a velocity equal to or greater than some minimum, u0, can be found by replacing the lower limit 

of the integral above with u0, leading to equation (5.16) for ZAB, where ε0 is the energy corresponding to 

the relative velocity, u0.
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ZAB = N A

∗ N B
∗σ AB

8kBT
πµ

exp
−ε0

kBT
⎛

⎝⎜
⎞

⎠⎟
 (5.16)

An analysis similar to the one just presented can be done for collisions between two A molecules. 
The primary difference is that one must be careful not to double-count the collisions. The resulting 

expression for the reactive collision frequency, ZAA, is given in equation (5.17). The analysis of a collision 

between three molecules, A, B, and C, requires a slight modification. The probability that all three 

molecules are in contact simultaneously is extremely small. Therefore, a collision is considered to have 

occurred whenever the centers of all three molecules are within a distance l of each other. The resulting 

expression for the reactive three-body collision frequency, ZABC, is given in equation (5.18).

  
ZAA = N A

∗( )2
σ AA

2kBT
πµ

exp
−ε0

kBT
⎛

⎝⎜
⎞

⎠⎟
 (5.17)

  
ZABC = 8N A

∗ N B
∗ NC

∗σ ABσ BCl
2kBT
π

1
µAB

+ 1
µBC

⎛

⎝⎜
⎞

⎠⎟
exp

−ε0

kBT
⎛

⎝⎜
⎞

⎠⎟
 (5.18)

To this point, all the equations have been developed on the basis of molecules. Through the use of 

Avogadro’s number, NAv, each quantity appearing in the equations above can be converted to molar units. 

Equations (5.19) through (5.22) give the necessary relationships.

  
ε0 =

E
N Av

 (5.19)

 
kB = R

N Av

 (5.20)

 Ni
∗ = N AvCi  (5.21)

  
ZAB = N Avrj , f  (5.22)

Substituting equations (5.19) through (5.22) into equations (5.16) through (5.18) gives equations 
(5.23) through (5.25) for the generalized forward rates of bimolecular A-B reactions, bimolecular A-A 

reactions, and termolecular A-B-C reactions, respectively. (The molecularity of an elementary reaction is 
equal to the number of species that participate as reactants.) It should be noted that these expressions 

only give the rate of the reaction in the forward direction, as indicated by the f appended to the subscript 

on the rate, r.

  
rAB, f = N Avσ ABCACB

8kBT
πµ

exp
−E j

RT
⎛

⎝⎜
⎞

⎠⎟
 (5.23)
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rAA, f = N Avσ AACA

2 2kBT
πµ

exp
−E j

RT
⎛

⎝⎜
⎞

⎠⎟
 (5.24)

  
rABC , f = 8N Avσ ABσ BClCACBCC

2kBT
π

1
µAB

+ 1
µBC

⎛
⎝⎜

⎞
⎠⎟

exp
−E j

RT
⎛

⎝⎜
⎞

⎠⎟
 (5.25)

Real molecules are not spheres. For an asymmetrical molecule, it may be necessary for the 

collision to take place in one part of the molecule in order to have reaction take place. If the colliding 
molecules are not oriented properly, necessary bonds can’t form and reaction can’t occur. The collision 

theory does not account for this kind of steric (geometric) limitation. If a reaction does have steric 
limitations, a constant is introduced into the rate expressions above. This constant, called a steric factor, 

is equal to the fraction of the collisions that have the orientation necessary for reaction to take place.
If the constants in the rate expressions above are unknown, they can be treated as adjustable 

parameters that are used to fit the rate expression to experimental data. In order to do so, groups of 
constants in the expressions above must be lumped together into single constants. Doing results in a 

single collision theory rate expression for the forward rate of an elementary reaction, equation (5.26). 

Note that the stoichiometric coefficients of the reactants in that equation, νi,j, are negative numbers so the 

resulting exponents on the concentrations are positive.

  

rj , f = k0, j , f T exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

−ν i , j

i=all
reactants

∏  (5.26)

Generally the net rate of reaction is more useful than the rate in the forward direction only. It is 
straightforward to generate an expression for the net rate of reaction. The definition of forward and 

reverse is completely arbitrary, so equation (5.26) can be used to generate an expression for the rate in 
the reverse direction, too.

  

rj ,r = k0, j ,r T exp
−E j ,r

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

ν ij

i=all
products

∏  (5.26)

When the reaction reaches thermodynamic equilibrium, its net rate will equal zero, and as a 
consequence, the rate in the forward direction will equal the rate in the reverse direction. Thus, the two 

uni-directional rates can be set equal to each other while simultaneously recognizing that this only true 
when the concentrations are equal to the equilibrium concentrations. Rearrangement of the resulting 

equation reveals that the ratio of the forward to the reverse rate coefficients must equal the equilibrium 
constant for the elementary reaction, equation (5.27).

  
rj , f equilibrium

= rj ,r equilibrium
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k0, j , f T exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
Ci−equil

−ν ij

i=all
reactants

∏ = k0, j ,r T exp
−E j ,r

RT
⎛

⎝⎜
⎞

⎠⎟
Ci−equil

ν ij

i=all
products

∏

  

k0, j , f T exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟

k0, j ,r T exp
−E j ,r

RT
⎛

⎝⎜
⎞

⎠⎟

= Ci−equil
ν ij

i=all
species

∏

  

k0, j , f T exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟

k0, j ,r T exp
−E j ,r

RT
⎛

⎝⎜
⎞

⎠⎟

= K j ,eqc
 (5.27)

An expression for the net rate of reaction according to collision theory is found by taking the 

difference between the forward and reverse rates. This can be written using the reverse rate coefficient, 
as in equation (5.28) or using the equilibrium constant, as in equation (5.29). The two forms are 

equivalent.

  
rj = rj , f − rj ,r

  

rj = k0, j , f T exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

−ν i , j

i=all
reactants

∏ − k0, j ,r T exp
−E j ,r

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

ν ij

i=all
products

∏  (5.28)

  

rj = k0, j , f T exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

−ν ij

i=all
reactants

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1−

Ci
ν ij

i=all
species

∏

K j ,eqc

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (5.29)

It is often convenient to use partial pressures as the composition variables in a gas phase reaction 
system. Equations (5.28) and (5.29) can be easily converted so that partial pressures replace the 

concentrations. Since equations (5.28) and (5.29) were derived assuming ideal gas type behavior, the 
concentrations and partial pressures are simply related via the ideal gas law as given in equation (5.30). 

Substitution of equation (5.30) into equation (5.28) or (5.29) leads, in a straightforward manner, to a rate 
expression in terms of partial pressures instead of concentrations.

Ci =
ni
V

= Pi
RT

 (5.30)

Collision theory as presented here is sometimes referred to as simple collision theory. It offers a 
simple molecular view of how reactions take place, and it can be useful for making rough approximations 

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Unit 5 10



of the values of pre-exponential factors. There are several shortcomings of simple collision theory. First, 
the point-mass assumption is very limiting; it ignores internal motions within molecules and the energy 

associated with those internal motions. A second shortcoming is the absence of attractive and repulsive 
forces between molecules. In a real system, a molecule that is passing close to a second molecule may 

be attracted by it, causing it to travel in a curved path and collide with that molecule instead of continuing 
past it on a straight line path. Another shortcoming is the absence of orientation requirements for reaction 

to occur. Simple collision theory does not offer an easy way to estimate the activation energy, it strictly 
applies only to gas phase reactions. There are also reactions for which the observed rate is higher than 

that predicted by the collision theory, and this can’t be explained by steric effects because they should 
lower the reaction rate, not raise it. There are more advanced formulations of collision theory that address 

the shortcomings enumerated here. Since these advanced formulations use more accurate 
representations of the molecules, they are often referred to as molecular reaction dynamics models.

The second theory for elementary reaction rates considered in this unit is known as transition state 
theory or sometimes as the theory of absolute reaction rates. There are several ways to develop the 

transition state theory. Some use classical thermodynamics and some use statistical mechanics. Here the 
theory will be developed in the context of the hypothetical reaction between an AB molecule and a C 

atom, equation (5.31).

AB + C → A + BC (5.31)

There are three atoms involved in reaction (5.31). Consider a system in space consisting of these 

three atoms. Each of the atoms may be located anywhere within the system. The arrangement of these 

three atoms in space can be specified using nine coordinates, namely the x, y, and z coordinates of each 

atom’s center. Quantum chemistry could be used to calculate the energy, Φ, of the system for all possible 

combinations of these nine coordinates. The energy could then be plotted as a function of the nine 

coordinates; that is, the potential energy would be a ten dimensional surface.
Most people can’t visualize a ten dimensional surface. Therefore consider an approximate three 

dimensional system where the centers of mass of all three atoms are constrained to lie on a common 
straight line, where the C atom is fixed at the origin, and where the C atom is not between the other two 

atoms. As shown in Figure 5.2, the geometry of this simplified system can be completely defined by two 

coordinates: the distance between the centers of the A and B atoms, DAB, and the distance between the 

centers of the B and C atoms, DBC. The energy for this simplified system can be represented as a three-

dimensional surface.

Figure 5.3 is an example of how this potential energy 
surface might appear. It can be seen that there are valleys or 

wells on the surface. (The same would be true of the ten-
dimensional potential surface originally considered.) Wells 

that are relatively deep represent geometric arrangements 
where stable compounds have formed. Figure 5.3 indicates 

two such wells. For one well in Figure 5.3 the DAB distance is 
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Figure 5.2. Constrained three atom 
system where all atoms lie on a 
common straight line. The geometry of 
the system is completely specified by 
the two distances DAB and DBC.

C B A

D
BC

D
AB



small and constant whereas the DBC distance 

can take on any large value. This well 
corresponds to the existence of an AB 

molecule and a separate C atom. The other 
well in Figure 5.3 corresponds to the 

existence of a BC molecule and a separate A 

atom; DBC is small and constant (equal to the 

bond length), and DAB can take on any large 

value.

Figure 5.3 also shows a path (a-b-c-d-
e) between the two potential wells. This path 

crosses over the smallest barrier separating 
the two wells. (That is, if one moved from one 

well to the other along any path other than the 
one shown, they would have to pass over a 

point where the energy was greater than the 
energy at point c.) Put another way, the point 

c is a saddle point from which the potential energy increases in all directions except along the identified 
path. For the reaction as written in equation (5.31), the starting point, a, is the well corresponding to an 

AB molecule and a separate C atom. Assume the reaction takes place with the three atoms constrained 
to remain collinear, with the C atom fixed at the origin, and with the C atom not between the other two 

atoms. Then as the reaction takes place the system traces out the path a-b-c-d-e shown in Figure 5.3. 
The difference in energy between the bottom of the well where the system started (point a) and the 

highest point on the path (point c) is the activation energy for the reaction. Notice that as the system 

passes over the barrier, DAB increases (the AB bond breaks) and DBC begins to approach the normal BC 

bond length.

Thus, if it is assumed that the lowest energy path is followed, the potential surface can be used to 
determine that path. Each point on the path completely specifies the orientation of the entire system. 

Once this path has been determined, the potential diagram can be reduced from however many 
dimensions it originally had to a two dimensional plot. The abscissa of the plot is the distance along the 

path that has been determined from the full potential surface, and the ordinate is the potential energy of 
the system at that distance along the path. The distance along the identified path is often referred to as 

the reaction coordinate. Figure 5.4 shows this kind of two-dimensional potential energy diagram. The 
diagram in Figure 5.4 corresponds to Figure 5.3; the points a through e on the two diagrams also 

correspond.
The state of the system when it is at the highest point in Figure 5.4 is known as the transition state. 

Recall that each point on the path corresponds to a specific arrangement of the atoms. At the top of the 

activation barrier (i. e. in the transition state) all the atoms are in close proximity. The distances DAB and 

DBC are different than they would be in either stable molecule. The species formed from the three atoms 
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Figure 5.3. A schematic representation of a potential 
energy surface for the reaction given in equation (5.31). 
The path denoted by the points a-b-c-d-e is the reaction 
coordinate. At point c, the lowest point on the barrier 
between the two potential energy wells, the activated 
complex is in the transition state.



when they are in the orientation corresponding to the 
transition state is called the activated complex. The 

activated complex is neither reactants nor products; it 
is a hybrid of the two. To recap, the entity at the top of 

the activation barrier is called the activated complex 
and it is said to be in the transition state.

The activated complex is not a stable chemical 
species. It is a species in transition, and its lifetime is 

exceedingly short. Nonetheless, in transition state 
theory, it is assumed that the activated complex can 

be treated like a stable chemical species. Specifically, 
it is assumed that the activated complex can be 

assigned thermodynamic properties like any stable 
species. These thermodynamic properties can be 

estimated using the same techniques that are used to 
estimate the thermodynamic properties of stable 

species.
The most important assumption of transition state theory is that the reactants are in a special kind 

of equilibrium with those activated complexes that are in the process of transforming from reactants into 
products. (The reactants are only in equilibrium with those activated complexes that are in the process of 

becoming products and not with those that are in the process of becoming reactants.) One consequence 
of this is that the theory will only apply when the reactant molecules are present in a Boltzmann 

distribution. If the reaction process is so fast that the distribution of reactant molecules deviates from the 
Boltzmann distribution, the transition state theory cannot be used. Fortunately this situation is infrequently 

encountered.
The rationale for assuming that “forward moving” activated complexes are in equilibrium with the 

reactants begins by considering the situation where the chemical reaction has reached thermodynamic 
equilibrium. At this point the net rate of reaction equals zero, but there is still a significant absolute rate in 

the forward direction and an equal absolute rate in the reverse direction. Thus, at overall equilibrium the 
reactants are in equilibrium with the forward moving activated complexes, the products are in equilibrium 

with the “backward moving” activated complexes, and the number of forward moving activated complexes 
must just equal the number of backward moving activated complexes. Now suppose that by some 

unspecified means, all product molecules are instantaneously removed, and thereby the overall reaction 
is no longer at equilibrium. Since the products have all been removed, the absolute rate in the reverse 

direction will be zero, but there is no reason why the number of forward moving activated complexes 
should change. This thought experiment justifies the assumption that the reactants are always in a special  

kind of equilibrium with those activated complexes which are in the process of becoming products. If this 
was not true, then the rate coefficient would change as the reaction approached equilibrium. Such a 

change in the rate coefficient has not been observed experimentally.
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Figure 5.4. A two dimensional representation of 
the potential energy along the reaction 
coordinate. Points a through e correspond their 
counterparts in Figure 5.3.



Returning to Figure 5.4, the absolute rate of reaction in the forward direction is seen to be equal to 
the number of times activated complexes pass over the potential barrier from the reactant well to the 

product well. This, in turn, depends upon two factors: how many forward-moving activated complexes are 
present at a given time, and how fast do they proceed along the reaction coordinate. The first factor is 

determined using the assumptions just described. It is assumed that the reactants are in equilibrium with 
those activated complexes in the process of moving across the potential barrier in the forward direction. 

For the reaction as written in equation (5.32), this can be expressed using an equilibrium constant as 
shown in equation (5.33). The latter equation can be rearranged to give an expression for the 

concentration of the activated complexes, equation (5.34). In equations (5.33) and (5.34) the brackets 

denote molar concentrations of the species within, K‡ is a concentration-based equilibrium constant for 

reaction (5.32), and the superscripted symbol, ‡, is used to denote that a given quantity is associated with 

a forward moving activated complex which is proceeding along the reaction coordinate.

AB + C ⇄ ABC‡ (5.32)

  
K ‡ =

ABC‡⎡⎣ ⎤⎦
AB⎡⎣ ⎤⎦ C⎡⎣ ⎤⎦

 (5.33)

  
ABC‡⎡⎣ ⎤⎦ = K ‡ AB⎡⎣ ⎤⎦ C⎡⎣ ⎤⎦  (5.34)

Equation (5.34) gives the number of moles of activated complexes in a unit volume. All that remains 

is to determine how rapidly each of these complexes travels along the reaction coordinate. In principle it 
would be possible to determine how rapidly the activated complex moves along the reaction coordinate 

using the original Cartesian coordinate system. Thus, progress along the reaction coordinate could be 

expressed in terms of the x, y, and z components of velocity of each of the three atoms in the activated 

complex. This would be very cumbersome because motion along the reaction coordinate involves 

simultaneous changes of all nine of the coordinates. It is easier (and customary) to use a different set of 
coordinates to describe the motion along the reaction coordinate. This does not change the potential 

surface in any way, it just changes the ease with which motion upon it can be described. (It is possible to 
describe a sphere using rectangular, cylindrical, or spherical coordinates. The sphere is the same in all 

three cases, but the equations describing it are much simpler if spherical coordinates are used). Thus, 
motion of the atoms making up the ABC‡ activated complex as it moves along the reaction coordinate can 

then be described in terms of the following nine coordinates. Three coordinates correspond translational 

motion of the center of mass of the activated complex as a whole; one coordinate in each of the x, y, and 

z directions. For non-linear activated complexes, three additional coordinates describe the rotational 

motion of the whole complex about axes parallel to the x, y, and z directions. (If the activated complex is 

linear only two coordinates are used; one each to describe the rotational motion about the two axes 

perpendicular to the centerline of the complex itself.) The remaining coordinates correspond to different 

vibrations within the activated complex. In general, if there are N atoms making up the activated complex 

the total number of coordinates is 3N. At first it may seem that little has been gained by changing 
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coordinate systems. However, it will be reasoned in what follows that as the activated complex 
approaches the top of the activation barrier, moving along the reaction coordinate becomes equivalent to 

changing just one vibrational mode. Hence the reaction coordinate becomes associated with a single 
coordinate of the system.

Consider now the equilibrium constant, K‡, in equation (5.34). Since it has been assumed that the 

activated complex can be treated as a stable species, this equilibrium constant can be analyzed from the 
viewpoint of statistical mechanics. For an ideal gas the equilibrium constant in terms of molar 

concentrations is given by equation (5.35).

  
K ‡ =

N AvqABC‡

qABqC

exp
−ΔE0

0

kBT
⎛

⎝⎜
⎞

⎠⎟
 (5.35)

In Equation (5.35) K‡ is the equilibrium constant for reaction (5.32) in terms of molar concentrations, qi is 

the molecular partition function (omitting the electronic contribution) per unit volume for species i,   −ΔE0
0  

is the change in ground state electronic energy of the system when reaction (5.32) takes place 

stoichiometrically at the absolute zero of temperature, kB is the Boltzmann constant, T is the temperature, 

and a superscripted ‡ is used to denote that a particular quantity involves a forward moving activated 

complex. (Note: equation (5.35) assumes that essentially all species are in their electronic ground state 

during reaction.)
According to statistical mechanics, the energy available to a system is distributed, or partitioned, 

among the different possible states of the system. The partition function, q, is a measure of the availability 

of these states per unit volume. The partition function is made up of component terms for each different 

type of state available to the system, e. g. as given in equation (5.36), where qtr-i is the partition function 

for the translational states of species i, qrot-i is the rotational partition function and qvib-i is the vibrational 

partition function.

 qi = qtr−iqrot−iqvib−i  (5.36)

Each type of state may have more than one degree of freedom. For example, if ABC‡ is a linear 

complex it will have three degrees of translational freedom, two degrees of rotational freedom, and four 
degrees of vibrational freedom. The partition functions for a certain type of motion can be broken down 

into terms for each of the available degrees of freedom. For example, if ABC‡ is a linear complex, then its 
vibrational partition function can be broken into four component terms as indicated in equation (5.37). In 

equation (15.37) the terms qν1-i, qv2-i, qv3-i, and qv4-i are vibrational partition functions for each of the (in 

this case, four) vibrational degree of freedom of species i. Equation (5.38) is used to calculate the value 

of the partition function for any one particular vibrational degree of freedom of species i. In equation 

(5.38) νn is the characteristic vibrational frequency associated with the nth degree of vibrational freedom 

and h is Planck’s constant.
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qvib−i = qv1−iqv2−iqv3−iqv4−i  (5.37)

  

qv−i =
1

1− exp
−hνn

kBT
⎛
⎝⎜

⎞
⎠⎟

 (5.38)

Using equation (5.36) through (5.38) the partition function for the activated complex can be 

expanded as in equation (5.39), where Nvib is the number of vibrational degrees of freedom for the ABC‡ 

activated complex.

  
q

ABC‡ = q
tr−ABC‡qrot−ABC‡ q

vn−ABC‡

n=1

Nvib

∏
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (5.39)

In an activated complex there are bonds which are in the process of breaking and/or forming. One 

way to view such a process is as a stretching/compressing vibration along the bond(s) in question. 
Referring back to Figure 5.2, one can imagine a kind of vibration where the central B atom moves back 

and forth horizontally while A and C remain relatively motionless. Clearly, at one end of this particular 
vibrational mode, the system would look more like AB + C, while at the other end of this mode it would 

look like A + BC. In other words, one half-cycle of this asymmetric stretching mode can easily be 
visualized as leading to the formation of a BC bond and the breaking of an AB bond. With this view, 

motion along the reaction coordinate in the vicinity of the transition state becomes equivalent to this one 
vibration. For present purposes this vibrational mode will be called the critical mode and its frequency will 

be denoted as νc. Since the bond(s) in question are not completely formed and/or broken in the activated 

complex, they are expected to be quite weak. The vibrational frequency of a weak bond is low, and this 
allows the partition function of this one vibrational mode to be approximated using equation (5.40). The 

partition function for this one weak bond can then be factored out of the total partition function, equation 
(5.39), for the ABC‡ activated complex, resulting in equation (5.41).

  

lim
νc→0

1

1− exp
−hνc

kBT
⎛
⎝⎜

⎞
⎠⎟

=
kBT
hνc

 (5.40)

  

q
ABC‡ = q

tr−ABC‡qrot−ABC‡ q
vn−ABC‡

n=1
n≠critical

mode

Nvibrational
modes

∏
⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

kBT
hνc

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

 (5.41)

Notice particularly that the continuous product in equation (5.41) excludes the partition function that 
was factored out. In addition, the approximation given in equation (5.40) has been used for the partition 

function of the critical vibration. The part of the total partition function which remains after factoring out the 
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term for the critical vibration is often denoted by the symbol q‡, where the subscripted ‡ denotes that one 

term has been factored out. This notation is formalized in equation (5.42).

  

q‡ =
q

ABC‡

kBT
hνc

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

= q
tr−ABC‡qrot−ABC‡ q

vn−ABC‡

n=1
n≠critical

mode

Nvibrational
modes

∏
⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 (5.42)

Rearranging equation (5.42) gives equation (5.43), which can then be substituted into equation 

(5.35) giving equation (5.44). Then equation (5.44) can be rearranged to give an expression for the critical 

vibrational frequency, equation (5.45).

  
q

ABC‡ = q‡

kBT
hνc

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

 (5.43)

  
K ‡ =

N Avq‡

kBT
hνc

⎧
⎨
⎩

⎫
⎬
⎭

qABqC

exp
−ΔE0

0

kBT
⎛

⎝⎜
⎞

⎠⎟
 (5.44)

  
νc =

N Avq‡

K ‡qABqC

kBT
h

⎧
⎨
⎩

⎫
⎬
⎭

exp
−ΔE0

0

kBT
⎛

⎝⎜
⎞

⎠⎟
 (5.45)

The final assumption needed to complete the analysis is that the frequency of the critical vibration 

will in fact equal the frequency at which the activated complexes are transformed into products. The 
assumption is that the first time the activated complex attempts to go through the asymmetric stretching 

vibration just described, the AB bond will break and the BC bond will form. As mentioned previously, the 
rate of the elementary reaction (5.32) will be equal to the product of the concentration of forward-moving 

activated complexes and the frequency at which they decompose. This is expressed in equation (5.46), 
which makes use of this final assumption.

  
rj , f = ABC‡⎡⎣ ⎤⎦νc  (5.46)

Equations (5.34) and (5.45) give expressions for the two terms on the right-hand side of equation 
(5.46). These can be substituted into equation (5.46) leading to equation (5.47) for the forward rate of the 

elementary reaction (5.31).

  
rj , f = K ‡ AB⎡⎣ ⎤⎦ C⎡⎣ ⎤⎦( ) N Avq‡

K ‡qABqC

kBT
h

⎧
⎨
⎩

⎫
⎬
⎭

exp
−ΔE0

0

kBT
⎛

⎝⎜
⎞

⎠⎟
 

  
rj , f =

N Avq‡

qABqC

kBT
h

⎧
⎨
⎩

⎫
⎬
⎭

exp
−ΔE0

0

kBT
⎛

⎝⎜
⎞

⎠⎟
AB⎡⎣ ⎤⎦ C⎡⎣ ⎤⎦  (5.47)
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The first few terms on the right-hand side of equation (5.47) are the rate coefficient according to the 
transition state theory. This is given in equation (5.48). Notice that the transition state theory rate 

coefficient contains an exponential dependence upon reciprocal temperature, but in addition the total 
partition functions include temperature dependence and temperature also appears directly.

  
k j , f =

N Avq‡

qABqC

kBT
h

⎧
⎨
⎩

⎫
⎬
⎭

exp
−ΔE0

0

kBT
⎛

⎝⎜
⎞

⎠⎟
 (5.48)

The same analysis can be applied to find the rate in the reverse direction. As was done above for 

collision theory, an expression can then be found for the net rate of reaction. The result is given by 
equations (5.49) and (5.50).

  

rj = k0, j , f T exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

−ν ij

i=all
reactants

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1−

Ci
ν ij

i=all
species

∏

K j ,eqc

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (5.49)

  

k0, j , f =
q‡

N Av

⎛

⎝⎜
⎞

⎠⎟
qi

N Av

⎛
⎝⎜

⎞
⎠⎟

ν ij

i=all
reactants

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

kB

h
⎛
⎝⎜

⎞
⎠⎟

 (5.50)

This simple formulation of transition state theory does have some shortcomings. It ignores the 
possibility of quantum mechanical tunneling through the barrier. Tunneling does not affect the rate 

coefficient for the vast majority of chemical reactions; it is most important when light elements are 
involved. A transmission coefficient can be added to account for tunneling in a manner similar to the way 

the steric factor accounts for orientation effects in simple collision theory. The assumption that all modes 
remain in thermodynamic equilibrium is the source for another shortcoming. Reaction typically takes place 

within 10-12 s, and that is often not enough time for all modes of motion to reach equilibrium, but the 
treatment given here ignores the dynamics of moving energy into the forming bond and into the leaving 

entity are not included. A third shortcoming of simple transition state theory is that it assumes all reaction 
events pass through the saddle point. Experimental and computational studies indicate that many times, 

the reacting molecules follow a reaction coordinate that passes over the barrier at a location other than 
the saddle point.

Comparing simple collision and transition state theory, they both predict that the form of the rate 
expression for an elementary reaction is given by equation (5.51) or (5.52). They differ in the temperature 

dependence they predict for the pre-exponential factors, k0,j,f and k0,j,r. Neither of the theories predicts the 

pre-exponential factors to be independent of temperature, as in the Arrhenius expression. In practice, 
however, it turns out to be very difficult to detect the variations due to the temperature dependence of the 

pre-exponential factors because it is weaker than the exponential temperature dependence shown 
explicitly in equations (5.51) and (5.52). As such, it is very common to treat the pre-exponential factors as 
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constants when writing theory-based rate expressions for elementary reactions. When this is done, the 
theories predict the same mathematical form for the rate expression and the rate coefficients conform to 

the Arrhenius expression.

 

  

rj = k0, j , f exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

−ν i , j

i=all
reactants

∏ − k0, j ,r exp
−E j ,r

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

ν i , j

i=all
products

∏  (5.51)

  

rj = k0, j , f exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
Ci

−ν i , j

i=all
reactants

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1−

Ci
ν i , j

i=all
species

∏

K j ,eqc

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (5.52)

Finally, when dealing with gas phase reactants, it is often more convenient to use partial pressures 
instead of concentrations. For an ideal gas, the partial pressure is related to the concentration as shown 

in equation (5.53). Substitution of equation (5.53) into equation (5.51), introduces the reciprocal of the 

quantity RT raised to an integer power into both terms in equation (5.51). This added term is again a weak 

temperature dependence compared to the exponential term, and as a consequence, it is quite common to 

include it within the pre-exponential factor while still assuming the pre-exponential factor to be a constant. 
The same is done when equation (5.53) is substituted into the concentrations in the first continuous 

product of equation (5.52). However, when equation (5.53) is substituted into the second continuous 
product of equation (5.52), it can be included in the equilibrium constant. This simply changes the 

equilibrium constant from a concentration equilibrium constant to a partial pressure equilibrium constant. 
The overall consequence of this is that both the simple collision theory and transition state theory then 

predict equation (5.54) or equation (5.55), they are equivalent, for the rate expression for an elementary 
reaction. In these equations, the pre-exponential factors are constants, the square brackets can denote 

either concentration or (for gases) partial pressure, and the equilibrium constant is either a concentration 
equilibrium constant or a partial pressure equilibrium constant, depending on whether concentrations or 

partial pressures are used for the square brackets.

Ci =
Pi
RT

 (5.53)

  

rj = k0, j , f exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
i⎡⎣ ⎤⎦

−ν i , j

i=all
reactants

∏ − k0, j ,r exp
−E j ,r

RT
⎛

⎝⎜
⎞

⎠⎟
i⎡⎣ ⎤⎦

ν i , j

i=all
products

∏  (5.54)

  

rj = k0, j , f exp
−E j , f

RT
⎛

⎝⎜
⎞

⎠⎟
i⎡⎣ ⎤⎦

−ν i , j

i=all
reactants

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1−

i⎡⎣ ⎤⎦
ν i , j

i=all
species

∏

K j ,eq

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (5.55)
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