
A First Course on Kinetics and Reaction Engineering

Example 5.5

Problem Purpose
This problem illustrates the use of transition state theory. Upon solving it, one should gain some 

new insight into the equivalence of collision theory and transition state theory.

Problem Statement
At first glance, it appears that simple collision theory and simple transition state theory yield very 

different expressions for the temperature dependence of the rate coefficient for an elementary reaction. 

Show that the reason for this is the simplified manner in which molecules are modeled in collision theory 
by applying transition state theory to the reaction between two point-mass molecules like those used in 

collision theory and showing that in that case, they predict the same temperature dependence.

Problem Solution
According to transition state theory, the rate expression for an elementary reaction is given by 

equation (1). In this problem, we are told to assume the reactants, A and B, are point masses. In keeping 

with the assumptions of simple collision theory, we will assume that the activated complex is a single 
entity consisting of the two point masses separated by a small distance (approximately the sum of the 

collision radii of the reactants). Being point masses, the two reactants have only three degrees of freedom 
each, and these three degrees of freedom correspond to translational motion in the three coordinate 

directions. The partition coefficient for three dimensional translational motion is given by equation (2).
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Because the activated complex consists of two “connected” point masses, it will have six degrees of 
freedom. Three of the activated complex’s degrees of freedom correspond to translational motion, and the 

partition function for that three dimensional translational motion is again given by equation (2). For the 
activated complex, the mass appearing in equation (2) will equal the sum of the two point masses. 

Because the activated complex is linear (it consists of two separated points), two of its remaining degrees 
of freedom correspond to rotational motion about two axes that are perpendicular to each other and to the 

axis formed by the two point masses. The partition function for this two-dimensional rotational motion is 

given by equation (3), where I is the moment of inertia of the activated complex. The moment of inertia is 

a constant that can be calculated from the two point masses and the distance by which they are 

separated.
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This leaves one degree of freedom that corresponds to vibrational motion. As discussed in the 

informational reading, one vibrational mode of the activated complex is taken to correspond to motion 

along the reaction coordinate. In this case, this vibration would involve the centers of mass moving closer 

and farther apart. The partition function for that degree of freedom is factored out of the total partition 

function for the activated complex, 
 
qAB‡

, that appears in equation (1). Thus, the three partition functions 

appearing in equation (1) are given by equations (4) through (6).
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Substitution of equations (4) through (6) into equation (1) and factoring out the temperature from 

each of the partition functions leads to equation (7) for the rate of an elementary reaction involving two 

point masses.
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The activated complex is taken to be two point masses, mA and mB, separated by a distance equal 

to the collision radii of A and B, RA and RB. For the purpose of determining its moment of inertia, we can 

locate it on the x-axis with its center of mass at the origin. In this coordinate system, point mass A is 
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located as x = 0, and point mass B is located on the x-axis at x = RA + RB. In this orientation, the center of 

mass, xcm, is found using equation (8). The moment of inertia is then found using equation (9). 

Substitution of the x-coordinates of point mass A (0), point mass B (RA + RB) and the center of mass 

(equation (8)) leads to equation (10) for the moment of inertia, where µ is the reduced mass.

xcm = mB

mA +mB

RA + RB( )  (8)

I = mA xA − xcm( )2 +mB xB − xcm( )2  (9)

I =
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Returning to equation (7), substitution of equation (10) for the moment of inertia and collection of 

like terms leads to equation (11). Simple collision theory predicts the rate expression given in equation 

(12) (see equation (5.26) in the informational reading). 
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Comparing equations (11) and (12), shows that simple collision theory and transition state theory 
predict the exact same rate expression for an elementary reaction between two point-mass molecules.
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