A First Course on Kinetics and Reaction Engineering

Unit 4 Pre-Class Quiz

1. Match the quantities listed below to the corresponding equation

a.	Rate with respect to a species	i) $r_g = \frac{1}{V} \lim_{\Delta t \to 0} \frac{\Delta m_{cells}}{\Delta t} = \frac{1}{V} \frac{dm_{cells}}{dt}$
b.	Specific cell growth rate	ii) $r_{i,j} = \lim_{\Delta t \to 0} \frac{1}{V} \frac{\Delta n_{i,j}}{\Delta t} = \frac{1}{V} \frac{dn_{i,j}}{dt}$
C.	Generalized reaction rate	iii) $r_j = \frac{1}{V_{fluid}} \frac{d\xi_j}{dt}$

d. Cell growth rate iv) $\mu = \frac{r_g}{C_{cells}}$

v)
$$r = f(T, P, \underline{x})$$

2. True or False? The rate expression for any reaction is the difference between two terms that depend upon the stoichiometry of the reaction as illustrated below for the reaction $2A \rightleftharpoons Y + Z$.

$$r = k_{forward} C_A^2 - k_{reverse} C_Y C_Z$$

3. Which of the following is the Arrhenius expression?

a.
$$K_j = \exp\left\{\frac{-\Delta G_j}{RT}\right\}$$

b. $k_j = \exp\left\{\frac{\Delta S_j}{R}\right\} \exp\left\{\frac{-\Delta H_j}{RT}\right\}$
c. $K_j = K_{0,j} \exp\left\{\frac{-\Delta H_j}{RT}\right\}$
d. $k_j = k_{0,j} \exp\left(\frac{-E_j}{RT}\right)$
e. $k_j = k_{0,j} T^a \exp\left(\frac{-E_j}{RT}\right)$

- 4. True or False? The activation energy that appears in the Arrhenius expression can be positive or negative.
- 5. True of False? The temperature dependence of a rate coefficient is ALWAYS modeled using the Arrhenius expression.