A First Course on Kinetics and Reaction Engineering Practice Problem 4.4

Problem Purpose

This problem introduces an alternative to the Arrhenius expression for the temperature dependence of a rate coefficient. In addition, it will help you determine whether you have mastered the learning objectives for this unit.

Problem Statement

Suppose that the rate coefficient for the isomerization of α -glucose to β -glucose was measured at several temperatures with the results given in the table below. Determine the Arrhenius parameters, k_0 and E, corresponding to the rate coefficient. Then determine the parameters, k_0 , a and E, in equation (1), which is an alternative to the Arrhenius expression for the temperature dependence of a rate coefficient. Discuss the accuracy of the two models.

T (°C)	10 ⁵ x k (s ⁻¹)		
10	3.20		
17	6.72		
23	12.07		
28	19.27		
35	36.38		
42	66.51		
46	92.59		
50	127.52		

Table 2	1 Data	for Practic	ce Problem	11
Table	i. Dala	IOI PIACU	ce Problem	4.4

$$k = k_0 T^a \exp\left(\frac{-E}{RT}\right)$$

(1)