
A First Course on Kinetics and Reaction Engineering

Example 4.6

Problem Purpose
This example illustrates the use of an Arrhenius plot to determine the best values of a pre-

exponential factor and an activation energy.

Problem Statement
  Kinetic studies were performed at a number of different temperatures to find the value of a second 

order rate coefficient at each of the temperatures. The results are given in the table below. Determine 

whether the temperature dependence of this rate coefficient is consistent with the Arrhenius equation, and 
find the best values for the pre-exponential factor and the activation energy.

Temperature
(°C)

Rate Coefficient
(L mol-1 min-1)

10 2.63 x 10-4

22 4.78 x 10-4

40 1.52 x 10-3

54 4.18 x 10-3

65 9.07 x 10-3

78 2.14 x 10-2

89 4.2 x 10-2

103 9.42 x 10-2

Problem Analysis
This problem clearly involves the use of the Arrhenius expression for the temperature dependence 

of a rate coefficient. The Arrhenius expression contains two unknown constants, the pre-exponential 

factor and the activation energy. Here we are given the value of the rate coefficient at eight different 
temperatures. If we substituted each of those eight data points into the Arrhenius expression, we would 

have eight equations in two unknowns. Unless the data were “made up” using the Arrhenius expression, 
there won’t be a single value of the pre-exponential factor and a single value of the activation energy that 

together satisfy the eight equations. Instead, we need to find the “best” values for those two parameters, 
i. e. the values that result in the smallest overall error when predicting the values of the eight rate 

coefficients. To do this, we must fit the Arrhenius expression to the experimental data. (If you aren’t 
familiar with least-squares fitting of a model to data, see Supplemental Unit S3.)
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Problem Solution
The Arrhenius expression for the temperature dependence of a rate coefficient is given in equation 

(1), where the temperature must be in absolute units. For this problem, the subscript j can be dropped 

since there is only one reaction under consideration. Taking the natural logarithm of each side of equation 
(1) leads to equation (2). When written as in equation (2), it can be seen to take the form of a straight line, 

equation (3), if y and x are defined as shown in equations (4) and (5). 
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In this problem, we are asked to test whether this mathematical model offers an accurate 

representation of the experimental data. Problems of this type can be solved by fitting the model equation 
to the data and then assessing the quality of the fit statistically and visually. In this particular problem, the 

model equation is linear, so linear least squares can be used to fit it to the experimental data (see 
Supplemental Unit S3). Linear least squares fitting can be performed manually, using a calculator, using a 

spreadsheet or using mathematics software. No matter which tool one chooses to use, it will be 
necessary to provide the following information and input data:

• the number of independent (x) variables

• whether or not the model includes an intercept (b)
• a set of experimental data points, each of which consists of a value for the dependent variable (y) 

and corresponding values for each of the independent variables (xi)

Clearly, there is only one independent variable in equation (3), and it does include an intercept. For 

each row in the data table, corresponding values of x and y can be computed using equations (4) and (5). 

These will constitute the experimental data set used in the fitting. When this information and input data 
are provided to whichever linear least squares fitting tool one chooses to employ, the resulting output 

shows that the correlation coefficient, r2, is is greater than 0.99, the best value of the slope, m, is equal to 

(-6.88 ± 0.63) x 103 K and the best value of the y-intercept, b, is equal to 15.8 ± 1.9]. (Here the 

uncertainties are the 95% confidence limits based on 8 data, other least squares fitting tools might 
provide different measures of the uncertainties in the fitted parameter values.) In most cases, a model plot 

like that shown in Figure 1 is also provided, but if such a plot is not provided, one can be generated easily.
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Figure 1. Model plot showing the experimental data as points and the model’s predictions as a line.

Before the best values for m and b can be accepted, one must decide whether the final model is 

sufficiently accurate. In this case, the accuracy of the model can be assessed using the correlation 

coefficient and the model plot. The closer the correlation coefficient is to a value of 1.0, the better the fit of 
the model to the data. In this case, the correlation coefficient of 0.99 indicates a good fit. Additionally, if 

the fit is accurate, then the scatter of the experimental data about the model should be small and random; 
there should not be any systematic deviations of the data from the model. Examining the model plot, 

Figure 1, it is apparent that these criteria also are satisfied. Thus, the model does appear to be sufficiently 
accurate and the values of the slope and intercept can accepted.

The problem asks for the best values for the pre-exponential factor and activation energy, not the 

best values of the slope and intercept of the Arrhenius plot. Comparing equation (3) to equation (2), and 

noting the definitions of x and y, equations (4) and (5), it can be seen that the slope is related to the 

activation energy as given in equation (6) and the intercept is related to the pre-exponential factor as 

given in equation (7). A differential error analysis shows that if a model parameter, p, is related to the 

slope, m, and intercept, b, of a linearized from of the model, as in equation (8), then the uncertainty in that 

parameter, λp, is related to the slope, intercept and their uncertainties, λm and λb, according to equation 

(9). Applying that relationship to the present problem shows that the uncertainties in E and k0 should be 

calculated using equations (10) and (11).
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Thus, using the values of m, λm, b and λb given above from fitting the linear form of the Arrhenius 

expression to the data, the best values of the activation energy and the pre-exponential factor can be 

calculated to be E = 57.3 ± 5.2 kJ mol-1 and k0 = (7.0 ± 13.4) x 106 L mol-1 min-1.

Calculation Details Using MATLAB
Three MATLAB script files are provided with Supplemental Unit S3. The file names indicate the 

number of independent variables and whether or not the model has an intercept. The script named 

FitLinmSR is used when the model has one independent variable (x) and does not include the intercept 

(b). FitLinmbSR is used when the model has one independent variable and does include the intercept, 

and FitLinSR is used when the model has two or more independent variables. (With MATLAB, when the 
model has two or more independent variables, it must have an intercept; Supplemental Unit S3 describes 

how to convert a model without an intercept into a model that has an intercept.) In this problem the model 
has one independent variable and an intercept, so the script file named FitLinmbSR will be used. To do 

so, the script file must be located in the current MATLAB working directory or in the MATLAB search path.

Before executing FitLinmbSR, the experimental values of x must be stored in a vector named x, 

and the experimental values of y must be stored in a vector named y_hat. This could be done at the 

MATLAB command prompt, but here I have created a MATLAB script that accomplishes these tasks and 

then executes FitLinmbSR. That script file is provided as Example_4_6.m; its contents are presented in 

Listing 1. In that file the data from the table in the problem statement are entered as vectors named t and 

k. The vector t contains the temperatures in degrees Celsius; a vector named T that contains the 

corresponding temperatures in Kelvins is generated, and from that, the vector x is generated using 

equation (5). The vector k contains the rate coefficients; it is used to generate the vector y_hat using 

equation (4). The script FitLinmbSR is then called to perform the fitting. It returns the correlation 

coefficient, r2, as r_squared, the slope, m, as m, the 95% confidence limits on the slope, λm, as m_u, the 

intercept, b, as b and the 95% confidence limits on the intercept, λb, as b_u. It also generates a model 

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 4.6 4



plot (Figure 1). Finally, best values of the activation energy and the pre-exponential factor, along with their 
95% confidence limits, are calculated using equations (6), (7), (10) and (11).

Listing 1. Contents of MATLAB script file Example_4_6.m used in the solution of this problem.

Listing 2 shows the results of running Example_4_6.m from the MATLAB command window.

% MATLAB file used in the solution of Example 4.6 of "A First Course on

% Kinetics and Reaction Engineering."

% Enter the data from the table and the gas constant

R = 8.3144e-3; % kJ/mol/K

t = [10; 22; 40; 54; 65; 78; 89; 103];

k = [2.63E-04; 4.78E-04; 1.52E-03; 4.18E-03; 9.07E-03; 2.14E-02;... 

    4.20E-02; 9.42E-02];

% Convert the temperatures to K and calculate the x values

T = t + 273.15;

x = 1./T;

% Calculate the y_hat values

y_hat = log(k);

% Use the MATLAB script file "FitLinmbSR.m" from "A First Course on

% Kinetics and Reaction Engineering" to fit a straight line with slope and

% intercept to the data

FitLinmbSR

% Calculate the activation energy and its 95% confidence limits

E = -m*R

lambda_E = R*m_u

% Calculate the pre-exponential factor and its 95% confidence limits

k0 = exp(b)

lambda_k0 = b_u*exp(b)
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Listing 2. MATLAB command window output upon running Example_4_6.m

>> Example_4_6

r_squared =

    0.9917

m =

  -6.8862e+03

m_u =

  629.4527

b =

   15.7565

b_u =

    1.9278

E =

   57.2548

lambda_E =

    5.2335

k0 =

   6.9657e+06

lambda_k0 =

   1.3429e+07
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